Edit model card

ncbi_disease_ner

This model is a fine-tuned version of bert-base-cased on an ncbi_disease dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0921
  • Precision: 0.8082
  • Recall: 0.8564
  • F1: 0.8316
  • Accuracy: 0.9835

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.1149 1.0 680 0.0580 0.7475 0.8501 0.7955 0.9810
0.0436 2.0 1360 0.0687 0.7430 0.8412 0.7890 0.9825
0.0164 3.0 2040 0.0702 0.7901 0.8513 0.8196 0.9830
0.0076 4.0 2720 0.0829 0.7884 0.8666 0.8257 0.9826
0.0047 5.0 3400 0.0921 0.8082 0.8564 0.8316 0.9835

Run the model

from transformers import pipeline

model_checkpoint = "manibt1993/ncbi_disease_ner"
token_classifier = pipeline(
    "token-classification", model=model_checkpoint, aggregation_strategy="simple"
)
token_classifier("patient has diabtes, anemia, hypertension with ckd which hurts the patient since 6 years. Patient today experience with right leg pain, fever and cough.")

Model output

[{'entity_group': 'Disease',
  'score': 0.69145554,
  'word': 'diabtes',
  'start': 12,
  'end': 19},
 {'entity_group': 'Disease',
  'score': 0.9955915,
  'word': 'anemia',
  'start': 21,
  'end': 27},
 {'entity_group': 'Disease',
  'score': 0.99971104,
  'word': 'hypertension',
  'start': 29,
  'end': 41},
 {'entity_group': 'Disease',
  'score': 0.9249976,
  'word': 'right leg pain',
  'start': 120,
  'end': 134},
 {'entity_group': 'Disease',
  'score': 0.9983512,
  'word': 'fever',
  'start': 136,
  'end': 141},
 {'entity_group': 'Disease',
  'score': 0.99849665,
  'word': 'cough',
  'start': 146,
  'end': 151}]

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.16.1
  • Tokenizers 0.15.1
Downloads last month
8
Safetensors
Model size
108M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for manibt1993/ncbi_disease_ner

Finetuned
(1946)
this model