en-phishing-email-classifier

This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6750

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 25

Training results

Training Loss Epoch Step Validation Loss
0.3976 1.0 137 0.3507
0.2556 2.0 274 0.3787
0.1948 3.0 411 0.4024
0.1544 4.0 548 0.3626
0.1267 5.0 685 0.3511
0.0988 6.0 822 0.3824
0.08 7.0 959 0.4497
0.0657 8.0 1096 0.4339
0.0573 9.0 1233 0.5017
0.0472 10.0 1370 0.5168
0.0467 11.0 1507 0.5324
0.0416 12.0 1644 0.6004
0.0386 13.0 1781 0.5630
0.0375 14.0 1918 0.5628
0.0307 15.0 2055 0.5649
0.0284 16.0 2192 0.6346
0.0274 17.0 2329 0.6234
0.0261 18.0 2466 0.6284
0.0238 19.0 2603 0.6398
0.0239 20.0 2740 0.6649
0.0227 21.0 2877 0.6750

Framework versions

  • Transformers 4.42.4
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
2
Safetensors
Model size
67M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no library tag.

Model tree for malecada/en-phishing-email-classifier

Finetuned
(7613)
this model