File size: 18,913 Bytes
efd83be
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
from dataclasses import dataclass

from transformers.models.t5.modeling_t5 import (
    T5Stack, T5Block, T5LayerNorm, T5LayerSelfAttention, T5LayerFF, T5LayerCrossAttention,
    T5PreTrainedModel, T5ForConditionalGeneration
)

import torch
import torch.nn as nn
from torch.nn import CrossEntropyLoss

from typing import Any, Callable, Dict, Iterable, List, Optional, Tuple
import copy

from transformers.modeling_outputs import ModelOutput, BaseModelOutput, BaseModelOutputWithPast, BaseModelOutputWithPastAndCrossAttentions, Seq2SeqLMOutput, Seq2SeqModelOutput
from transformers.modeling_utils import PreTrainedModel, find_pruneable_heads_and_indices, prune_linear_layer
from transformers.utils import logging
from transformers import BeamScorer, BeamSearchScorer

logger = logging.get_logger(__name__)

# The encoder for input token sequence
class JointEncoder(T5Stack):
    def __init__(self, config, embed_tokens=None):
        super(T5Stack, self).__init__(config)
        self.config = config

        self.embed_tokens = embed_tokens
        self.is_decoder = self.config.is_decoder
        assert self.config.is_decoder is False

        self.block = nn.ModuleList(
            [T5Block(config, has_relative_attention_bias=(i == 0))
                for i in range(config.num_layers)]
        )
        self.final_layer_norm = T5LayerNorm(
            config.d_model, eps=config.layer_norm_epsilon)
        self.dropout = nn.Dropout(config.dropout_rate)
        
        ## Set maximum 512 whole words in a source text
        self.whole_word_embeddings = nn.Embedding(
            512, config.d_model   ## config.d_model is 768 for base
        )
        self.init_weights()
        self.model_parallel = False
        self.device_map = None

    def set_input_embeddings(self, new_embeddings):
        self.embed_tokens = new_embeddings

    def forward(
        self,
        input_ids=None,
        whole_word_ids=None,
        attention_mask=None,
        inputs_embeds=None,
        head_mask=None,
        past_key_values=None,
        use_cache=None,
        output_attentions=None,
        output_hidden_states=None,
        return_dict=None,
    ):

        if inputs_embeds is None:
            assert self.embed_tokens is not None, "You have to initialize the model with valid token embeddings"
            inputs_embeds = self.embed_tokens(input_ids) ### embedding step - add HERE ###
            if whole_word_ids is not None:
                whole_word_embeds = self.whole_word_embeddings(whole_word_ids)
                assert whole_word_embeds.shape[-1] == inputs_embeds.shape[-1]
                inputs_embeds = inputs_embeds + whole_word_embeds

        B, L = inputs_embeds.size()[:-1]

        if attention_mask is None:
            attention_mask = input_ids.ne(self.config.pad_token_id).to(dtype=inputs_embeds.dtype, device=inputs_embeds.device)

        # ourselves in which case we just need to make it broadcastable to all heads.
        extended_attention_mask = self.get_extended_attention_mask(
            attention_mask,
            (B, L),
            inputs_embeds.device)

        # initialize past_key_values with `None` if past does not exist
        if past_key_values is None:
            past_key_values = [None] * len(self.block)

        # Prepare head mask if needed
        head_mask = self.get_head_mask(head_mask, self.config.num_layers)
        present_key_value_states = () if use_cache else None
        all_hidden_states = () if output_hidden_states else None
        all_attentions = () if output_attentions else None
        all_cross_attentions = () if (output_attentions and self.is_decoder) else None

        hidden_states = self.dropout(inputs_embeds)

        if self.config.num_layers > 0:

            assert self.block[0].layer[0].SelfAttention.has_relative_attention_bias

            seq_length = L
            q_len = seq_length
            k_len = seq_length

            # [1, n_heads, Q_len, K_len]
            text_position_bias = self.block[0].layer[0].SelfAttention.compute_bias(
                L, L)
            num_heads = text_position_bias.size(1)
            position_bias = text_position_bias.new_zeros(
                1, num_heads, seq_length, seq_length)
            position_bias[:, :, :L, :L] = text_position_bias

            position_bias = position_bias + extended_attention_mask

            for i, (layer_module, past_key_value) in enumerate(zip(self.block, past_key_values)):
                layer_head_mask = head_mask[i]
                layer_outputs = layer_module(
                    hidden_states,
                    attention_mask=extended_attention_mask,
                    position_bias=position_bias,
                    encoder_hidden_states=None,
                    encoder_attention_mask=None,
                    encoder_decoder_position_bias=None,
                    # head_mask=head_mask[i],
                    layer_head_mask=layer_head_mask,
                    past_key_value=past_key_value,
                    use_cache=use_cache,
                    output_attentions=output_attentions,
                )
                
                # layer_outputs is a tuple with:
                # hidden-states, key-value-states, (self-attention weights), (self-attention position bias), (cross-attention weights), (cross-attention position bias)
                hidden_states, present_key_value_state = layer_outputs[:2]

                # We share the position biases between the layers - the first layer store them
                # layer_outputs = hidden-states, key-value-states (self-attention weights),
                # (self-attention position bias), (cross-attention weights), (cross-attention position bias)
                
                # position_bias = layer_outputs[2]

                # append next layer key value states
                if use_cache:
                    present_key_value_states = present_key_value_states + \
                        (present_key_value_state,)

        hidden_states = self.final_layer_norm(hidden_states)
        hidden_states = self.dropout(hidden_states)

        # Add last layer
        if output_hidden_states:
            all_hidden_states = all_hidden_states + (hidden_states,)

        if not return_dict:
            return tuple(
                v
                for v in [
                    hidden_states,
                    present_key_value_states,
                    all_hidden_states,
                    all_attentions,
                    all_cross_attentions,
                ]
                if v is not None
            )
        return BaseModelOutputWithPastAndCrossAttentions(
            last_hidden_state=hidden_states,
            past_key_values=present_key_value_states,
            hidden_states=all_hidden_states,
            attentions=all_attentions,
            cross_attentions=all_cross_attentions,
        )


class P5(T5ForConditionalGeneration):
    _keys_to_ignore_on_load_missing = [
        r"encoder\.embed_tokens\.weight",
        r"decoder\.embed_tokens\.weight",
        r"lm_head\.weight",
    ]
    _keys_to_ignore_on_load_unexpected = [
        r"decoder\.block\.0\.layer\.1\.EncDecAttention\.relative_attention_bias\.weight",
    ]

    def __init__(self, config):
        super(T5ForConditionalGeneration, self).__init__(config)

        self.config = config

        self.model_dim = config.d_model

        self.shared = nn.Embedding(config.vocab_size, config.d_model)

        encoder_config = copy.deepcopy(config)
        encoder_config.is_decoder = False
        encoder_config.use_cache = False
        encoder_config.is_encoder_decoder = False

        self.encoder = JointEncoder(encoder_config, self.shared)

        decoder_config = copy.deepcopy(config)
        decoder_config.is_decoder = True
        decoder_config.is_encoder_decoder = False

        self.decoder = T5Stack(decoder_config, self.shared)

        self.lm_head = nn.Linear(config.d_model, config.vocab_size, bias=False)

        self.init_weights()

        self.model_parallel = False
        self.device_map = None

    def set_input_embeddings(self, new_embeddings):
        self.shared = new_embeddings
        self.encoder.set_input_embeddings(new_embeddings)
        self.decoder.set_input_embeddings(new_embeddings)

    def extend_vocab(self, vocab_size):

        new_shared = nn.Embedding(vocab_size, self.config.d_model)
        old_weight = self.shared.weight.data.detach().clone()
        old_vocab_size = old_weight.size(0)
        new_shared.weight.data[:old_vocab_size, :] = old_weight
        self.shared = new_shared

        new_lm_head = nn.Linear(self.config.d_model, vocab_size, bias=False)
        old_weight = self.lm_head.weight.data.detach().clone()
        old_vocab_size = old_weight.size(0)
        new_lm_head.weight.data[:old_vocab_size, :] = old_weight
        self.lm_head = new_lm_head

        self.encoder.embed_tokens = self.shared
        self.decoder.embed_tokens = self.shared

        self.lm_head.weight = self.shared.weight

        self.config.vocab_size = vocab_size
        self.encoder.config.vocab_size = vocab_size
        self.decoder.config.vocab_size = vocab_size

    def forward(
        self,
        input_ids=None,
        whole_word_ids=None,
        attention_mask=None,
        encoder_outputs=None,
        decoder_input_ids=None,
        decoder_attention_mask=None,
        past_key_values=None,
        use_cache=None,
        labels=None,
        inputs_embeds=None,
        decoder_inputs_embeds=None,
        head_mask=None,
        output_attentions=None,
        output_hidden_states=None,
        return_dict=None,
        reduce_loss=False,

        return_hidden_state=False,

        **kwargs,
    ):

        use_cache = use_cache if use_cache is not None else self.config.use_cache
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        if encoder_outputs is None:
            encoder_outputs = self.encoder(
                input_ids=input_ids,
                whole_word_ids=whole_word_ids,
                attention_mask=attention_mask,
                inputs_embeds=inputs_embeds,
                head_mask=head_mask,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
                return_dict=return_dict,
            )
        elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
            encoder_outputs = BaseModelOutput(
                last_hidden_state=encoder_outputs[0],
                hidden_states=encoder_outputs[1] if len(
                    encoder_outputs) > 1 else None,
                attentions=encoder_outputs[2] if len(
                    encoder_outputs) > 2 else None,
            )

        hidden_states = encoder_outputs[0]

        if labels is not None and decoder_input_ids is None and decoder_inputs_embeds is None:
            # get decoder inputs from shifting lm labels to the right
            decoder_input_ids = self._shift_right(labels)

        # If decoding with past key value states, only the last tokens
        # should be given as an input
        if past_key_values is not None:
            assert labels is None, "Decoder should not use cached key value states when training."
            if decoder_input_ids is not None:
                decoder_input_ids = decoder_input_ids[:, -1:]
            if decoder_inputs_embeds is not None:
                decoder_inputs_embeds = decoder_inputs_embeds[:, -1:]

        if attention_mask is None:
            attention_mask = input_ids.ne(self.config.pad_token_id).to(dtype=hidden_states.dtype, device=hidden_states.device)
        encoder_attention_mask = attention_mask

        # Decode
        decoder_outputs = self.decoder(
            input_ids=decoder_input_ids,
            attention_mask=decoder_attention_mask,
            inputs_embeds=decoder_inputs_embeds,
            past_key_values=past_key_values,

            encoder_hidden_states=hidden_states,
            encoder_attention_mask=encoder_attention_mask,

            head_mask=head_mask,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        sequence_output = decoder_outputs[0]

        assert self.config.tie_word_embeddings is True

        if self.config.tie_word_embeddings:
            sequence_output = sequence_output * (self.model_dim ** -0.5)

        if return_hidden_state:
            return sequence_output

        lm_logits = self.lm_head(sequence_output)

        loss = None
        if labels is not None:
            if reduce_loss:
                loss_fct = CrossEntropyLoss(ignore_index=-100)
            else:
                loss_fct = CrossEntropyLoss(ignore_index=-100, reduction='none')
            loss = loss_fct(
                lm_logits.view(-1, lm_logits.size(-1)),
                labels.view(-1))

        return P5Seq2SeqLMOutput(
            loss=loss,
            logits=lm_logits,
            past_key_values=decoder_outputs.past_key_values,
            decoder_last_hidden_state=decoder_outputs.last_hidden_state,
            decoder_hidden_states=decoder_outputs.hidden_states,
        )

    def prepare_inputs_for_generation(
        self, input_ids, past=None, attention_mask=None, use_cache=None,
        encoder_outputs=None,
        **kwargs):

        if past is not None:
            input_ids = input_ids[:, -1:]

        output = {
            "decoder_input_ids": input_ids,
            "past_key_values": past,
            "encoder_outputs": encoder_outputs,
            "attention_mask": attention_mask,
            "use_cache": use_cache,
        }

        return output

    @staticmethod
    def _expand_inputs_for_generation(
        input_ids: torch.LongTensor,
        expand_size: int = 1,
        is_encoder_decoder: bool = False,
        attention_mask: torch.LongTensor = None,
        encoder_outputs: ModelOutput = None,
        **model_kwargs
    ) -> Tuple[torch.LongTensor, Dict[str, Any]]:
        expanded_return_idx = (
            torch.arange(input_ids.shape[0]).view(-1, 1).repeat(1,
                                                                expand_size).view(-1).to(input_ids.device)
        )
        input_ids = input_ids.index_select(0, expanded_return_idx)

        if "token_type_ids" in model_kwargs:
            token_type_ids = model_kwargs["token_type_ids"]
            model_kwargs["token_type_ids"] = token_type_ids.index_select(
                0, expanded_return_idx)

        if attention_mask is not None:
            model_kwargs["attention_mask"] = attention_mask.index_select(
                0, expanded_return_idx)

        if is_encoder_decoder:
            assert encoder_outputs is not None
            encoder_outputs["last_hidden_state"] = encoder_outputs.last_hidden_state.index_select(
                0, expanded_return_idx
            )
            model_kwargs["encoder_outputs"] = encoder_outputs

        return input_ids, model_kwargs


@dataclass
class P5Seq2SeqLMOutput(ModelOutput):
    """
    Base class for sequence-to-sequence language models outputs.

    Args:
        loss (:obj:`torch.FloatTensor` of shape :obj:`(1,)`, `optional`, returned when :obj:`labels` is provided):
            Languaged modeling loss.
        logits (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, config.vocab_size)`):
            Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
        past_key_values (:obj:`List[torch.FloatTensor]`, `optional`, returned when ``use_cache=True`` is passed or when ``config.use_cache=True``):
            List of :obj:`torch.FloatTensor` of length :obj:`config.n_layers`,  with each tensor of shape
            :obj:`(2, batch_size, num_heads, sequence_length, embed_size_per_head)`).

            Contains pre-computed hidden-states (key and values in the attention blocks) of the decoder that can be
            used (see ``past_key_values`` input) to speed up sequential decoding.
        decoder_hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
            Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
            of shape :obj:`(batch_size, sequence_length, hidden_size)`.

            Hidden-states of the decoder at the output of each layer plus the initial embedding outputs.
        decoder_attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
            Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape
            :obj:`(batch_size, num_heads, sequence_length, sequence_length)`.

            Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the
            self-attention heads.
        encoder_last_hidden_state (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`):
            Sequence of hidden-states at the output of the last layer of the encoder of the model.
        encoder_hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
            Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
            of shape :obj:`(batch_size, sequence_length, hidden_size)`.

            Hidden-states of the encoder at the output of each layer plus the initial embedding outputs.
        encoder_attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
            Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape
            :obj:`(batch_size, num_heads, sequence_length, sequence_length)`.

            Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the
            self-attention heads.
    """

    loss: Optional[torch.FloatTensor] = None
    logits: torch.FloatTensor = None
    past_key_values: Optional[List[torch.FloatTensor]] = None
    decoder_last_hidden_state: Optional[Tuple[torch.FloatTensor]] = None
    decoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
    decoder_attentions: Optional[Tuple[torch.FloatTensor]] = None
    encoder_last_hidden_state: Optional[torch.FloatTensor] = None
    encoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
    encoder_attentions: Optional[Tuple[torch.FloatTensor]] = None