|
--- |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- common_voice |
|
model-index: |
|
- name: arabic-iti |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# arabic-iti |
|
|
|
This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the common_voice dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.0154 |
|
- Wer: 0.6350 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0005 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 1 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 8 |
|
- total_train_batch_size: 64 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 3000 |
|
- num_epochs: 50 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | |
|
|:-------------:|:-----:|:-----:|:---------------:|:------:| |
|
| 3.0355 | 2.36 | 400 | 3.0286 | 1.0 | |
|
| 0.7999 | 4.73 | 800 | 0.8623 | 0.8067 | |
|
| 0.4485 | 7.1 | 1200 | 0.6920 | 0.6651 | |
|
| 0.3719 | 9.47 | 1600 | 0.6361 | 0.6591 | |
|
| 0.3401 | 11.83 | 2000 | 0.6967 | 0.6497 | |
|
| 0.3222 | 14.2 | 2400 | 0.6697 | 0.6246 | |
|
| 0.3094 | 16.57 | 2800 | 0.7282 | 0.6537 | |
|
| 0.2822 | 18.93 | 3200 | 0.8019 | 0.6816 | |
|
| 0.2446 | 21.3 | 3600 | 0.7622 | 0.6608 | |
|
| 0.235 | 23.67 | 4000 | 0.8644 | 0.6780 | |
|
| 0.2362 | 26.04 | 4400 | 0.9083 | 0.6710 | |
|
| 0.206 | 28.4 | 4800 | 0.8243 | 0.6598 | |
|
| 0.1765 | 30.77 | 5200 | 0.8614 | 0.6647 | |
|
| 0.1458 | 33.14 | 5600 | 0.8907 | 0.6447 | |
|
| 0.1544 | 35.5 | 6000 | 0.9059 | 0.6523 | |
|
| 0.2402 | 18.88 | 6400 | 0.9639 | 0.6970 | |
|
| 0.2026 | 20.06 | 6800 | 0.9868 | 0.6817 | |
|
| 0.185 | 21.24 | 7200 | 1.0043 | 0.6936 | |
|
| 0.1951 | 22.42 | 7600 | 0.8918 | 0.6795 | |
|
| 0.1933 | 23.6 | 8000 | 0.9367 | 0.6826 | |
|
| 0.2272 | 24.78 | 8400 | 0.8540 | 0.6792 | |
|
| 0.1922 | 25.96 | 8800 | 0.8983 | 0.6657 | |
|
| 0.1547 | 27.14 | 9200 | 0.9742 | 0.6747 | |
|
| 0.1579 | 28.32 | 9600 | 0.9066 | 0.6668 | |
|
| 0.1642 | 29.5 | 10000 | 0.9440 | 0.6790 | |
|
| 0.1726 | 30.68 | 10400 | 0.9654 | 0.6813 | |
|
| 0.1656 | 31.86 | 10800 | 0.9880 | 0.6801 | |
|
| 0.1741 | 33.04 | 11200 | 0.9707 | 0.6584 | |
|
| 0.1494 | 34.22 | 11600 | 0.9801 | 0.6709 | |
|
| 0.1482 | 35.4 | 12000 | 0.9258 | 0.6646 | |
|
| 0.14 | 36.58 | 12400 | 0.9802 | 0.6635 | |
|
| 0.142 | 37.76 | 12800 | 0.9268 | 0.6524 | |
|
| 0.1281 | 38.94 | 13200 | 0.9615 | 0.6587 | |
|
| 0.1051 | 40.12 | 13600 | 0.9721 | 0.6495 | |
|
| 0.1074 | 41.3 | 14000 | 1.0045 | 0.6582 | |
|
| 0.0879 | 42.48 | 14400 | 1.0290 | 0.6516 | |
|
| 0.1015 | 43.66 | 14800 | 1.0514 | 0.6556 | |
|
| 0.0932 | 44.84 | 15200 | 1.0287 | 0.6450 | |
|
| 0.1008 | 46.02 | 15600 | 0.9940 | 0.6399 | |
|
| 0.0968 | 47.2 | 16000 | 1.0206 | 0.6368 | |
|
| 0.0858 | 48.38 | 16400 | 1.0452 | 0.6361 | |
|
| 0.0886 | 49.56 | 16800 | 1.0154 | 0.6350 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.11.3 |
|
- Pytorch 1.10.1+cu102 |
|
- Datasets 1.13.3 |
|
- Tokenizers 0.10.3 |
|
|