update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,104 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
datasets:
|
6 |
+
- common_voice
|
7 |
+
model-index:
|
8 |
+
- name: arabic-iti
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# arabic-iti
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the common_voice dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 1.0154
|
20 |
+
- Wer: 0.6350
|
21 |
+
|
22 |
+
## Model description
|
23 |
+
|
24 |
+
More information needed
|
25 |
+
|
26 |
+
## Intended uses & limitations
|
27 |
+
|
28 |
+
More information needed
|
29 |
+
|
30 |
+
## Training and evaluation data
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Training procedure
|
35 |
+
|
36 |
+
### Training hyperparameters
|
37 |
+
|
38 |
+
The following hyperparameters were used during training:
|
39 |
+
- learning_rate: 0.0005
|
40 |
+
- train_batch_size: 8
|
41 |
+
- eval_batch_size: 1
|
42 |
+
- seed: 42
|
43 |
+
- gradient_accumulation_steps: 8
|
44 |
+
- total_train_batch_size: 64
|
45 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
46 |
+
- lr_scheduler_type: linear
|
47 |
+
- lr_scheduler_warmup_steps: 3000
|
48 |
+
- num_epochs: 50
|
49 |
+
- mixed_precision_training: Native AMP
|
50 |
+
|
51 |
+
### Training results
|
52 |
+
|
53 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer |
|
54 |
+
|:-------------:|:-----:|:-----:|:---------------:|:------:|
|
55 |
+
| 3.0355 | 2.36 | 400 | 3.0286 | 1.0 |
|
56 |
+
| 0.7999 | 4.73 | 800 | 0.8623 | 0.8067 |
|
57 |
+
| 0.4485 | 7.1 | 1200 | 0.6920 | 0.6651 |
|
58 |
+
| 0.3719 | 9.47 | 1600 | 0.6361 | 0.6591 |
|
59 |
+
| 0.3401 | 11.83 | 2000 | 0.6967 | 0.6497 |
|
60 |
+
| 0.3222 | 14.2 | 2400 | 0.6697 | 0.6246 |
|
61 |
+
| 0.3094 | 16.57 | 2800 | 0.7282 | 0.6537 |
|
62 |
+
| 0.2822 | 18.93 | 3200 | 0.8019 | 0.6816 |
|
63 |
+
| 0.2446 | 21.3 | 3600 | 0.7622 | 0.6608 |
|
64 |
+
| 0.235 | 23.67 | 4000 | 0.8644 | 0.6780 |
|
65 |
+
| 0.2362 | 26.04 | 4400 | 0.9083 | 0.6710 |
|
66 |
+
| 0.206 | 28.4 | 4800 | 0.8243 | 0.6598 |
|
67 |
+
| 0.1765 | 30.77 | 5200 | 0.8614 | 0.6647 |
|
68 |
+
| 0.1458 | 33.14 | 5600 | 0.8907 | 0.6447 |
|
69 |
+
| 0.1544 | 35.5 | 6000 | 0.9059 | 0.6523 |
|
70 |
+
| 0.2402 | 18.88 | 6400 | 0.9639 | 0.6970 |
|
71 |
+
| 0.2026 | 20.06 | 6800 | 0.9868 | 0.6817 |
|
72 |
+
| 0.185 | 21.24 | 7200 | 1.0043 | 0.6936 |
|
73 |
+
| 0.1951 | 22.42 | 7600 | 0.8918 | 0.6795 |
|
74 |
+
| 0.1933 | 23.6 | 8000 | 0.9367 | 0.6826 |
|
75 |
+
| 0.2272 | 24.78 | 8400 | 0.8540 | 0.6792 |
|
76 |
+
| 0.1922 | 25.96 | 8800 | 0.8983 | 0.6657 |
|
77 |
+
| 0.1547 | 27.14 | 9200 | 0.9742 | 0.6747 |
|
78 |
+
| 0.1579 | 28.32 | 9600 | 0.9066 | 0.6668 |
|
79 |
+
| 0.1642 | 29.5 | 10000 | 0.9440 | 0.6790 |
|
80 |
+
| 0.1726 | 30.68 | 10400 | 0.9654 | 0.6813 |
|
81 |
+
| 0.1656 | 31.86 | 10800 | 0.9880 | 0.6801 |
|
82 |
+
| 0.1741 | 33.04 | 11200 | 0.9707 | 0.6584 |
|
83 |
+
| 0.1494 | 34.22 | 11600 | 0.9801 | 0.6709 |
|
84 |
+
| 0.1482 | 35.4 | 12000 | 0.9258 | 0.6646 |
|
85 |
+
| 0.14 | 36.58 | 12400 | 0.9802 | 0.6635 |
|
86 |
+
| 0.142 | 37.76 | 12800 | 0.9268 | 0.6524 |
|
87 |
+
| 0.1281 | 38.94 | 13200 | 0.9615 | 0.6587 |
|
88 |
+
| 0.1051 | 40.12 | 13600 | 0.9721 | 0.6495 |
|
89 |
+
| 0.1074 | 41.3 | 14000 | 1.0045 | 0.6582 |
|
90 |
+
| 0.0879 | 42.48 | 14400 | 1.0290 | 0.6516 |
|
91 |
+
| 0.1015 | 43.66 | 14800 | 1.0514 | 0.6556 |
|
92 |
+
| 0.0932 | 44.84 | 15200 | 1.0287 | 0.6450 |
|
93 |
+
| 0.1008 | 46.02 | 15600 | 0.9940 | 0.6399 |
|
94 |
+
| 0.0968 | 47.2 | 16000 | 1.0206 | 0.6368 |
|
95 |
+
| 0.0858 | 48.38 | 16400 | 1.0452 | 0.6361 |
|
96 |
+
| 0.0886 | 49.56 | 16800 | 1.0154 | 0.6350 |
|
97 |
+
|
98 |
+
|
99 |
+
### Framework versions
|
100 |
+
|
101 |
+
- Transformers 4.11.3
|
102 |
+
- Pytorch 1.10.1+cu102
|
103 |
+
- Datasets 1.13.3
|
104 |
+
- Tokenizers 0.10.3
|