Overview
This repository contains the robust ImageNet models used in our paper "Do adversarially robust imagenet models transfer better?".
See our papers's GitHub repository for more details!
Summary of our pretrained models
Standard Accuracy of L2-Robust ImageNet Models
Model | ε=0 | ε=0.01 | ε=0.03 | ε=0.05 | ε=0.1 | ε=0.25 | ε=0.5 | ε=1.0 | ε=3.0 | ε=5.0 |
---|---|---|---|---|---|---|---|---|---|---|
ResNet-18 | 69.79 | 69.90 | 69.24 | 69.15 | 68.77 | 67.43 | 65.49 | 62.32 | 53.12 | 45.59 |
ResNet-50 | 75.80 | 75.68 | 75.76 | 75.59 | 74.78 | 74.14 | 73.16 | 70.43 | 62.83 | 56.13 |
Wide-ResNet-50-2 | 76.97 | 77.25 | 77.26 | 77.17 | 76.74 | 76.21 | 75.11 | 73.41 | 66.90 | 60.94 |
Wide-ResNet-50-4 | 77.91 | 78.02 | 77.87 | 77.77 | 77.64 | 77.10 | 76.52 | 75.51 | 69.67 | 65.20 |
Model | ε=0 | ε=3 |
---|---|---|
DenseNet | 77.37 | 66.98 |
MNASNET | 60.97 | 41.83 |
MobileNet-v2 | 65.26 | 50.40 |
ResNeXt50_32x4d | 77.38 | 66.25 |
ShuffleNet | 64.25 | 43.32 |
VGG16_bn | 73.66 | 57.19 |
Standard Accuracy of Linf-Robust ImageNet Models
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API:
The model has no library tag.