File size: 4,818 Bytes
c1ad202 a1c228a c1ad202 a1c228a c1ad202 a1c228a c1ad202 a1c228a c1ad202 a1c228a c1ad202 b9d615a c1ad202 a1c228a c1ad202 a1c228a c1ad202 b9d615a c1ad202 01e7690 c1ad202 a1c228a c1ad202 01e7690 a1c228a 05b34fc a1c228a c1ad202 a1c228a c1ad202 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 |
---
language: en
thumbnail:
license: mit
tags:
- question-answering
-
-
datasets:
- squad_v2
metrics:
- squad_v2
widget:
- text: "Where is the Eiffel Tower located?"
context: "The Eiffel Tower is a wrought-iron lattice tower on the Champ de Mars in Paris, France. It is named after the engineer Gustave Eiffel, whose company designed and built the tower."
- text: "Who is Frederic Chopin?"
context: "Frédéric François Chopin, born Fryderyk Franciszek Chopin (1 March 1810 – 17 October 1849), was a Polish composer and virtuoso pianist of the Romantic era who wrote primarily for solo piano."
---
## BERT-base uncased model fine-tuned on SQuAD v1
This model was created using the [nn_pruning](https://github.com/huggingface/nn_pruning) python library: the **linear layers contains 25.0%** of the original weights.
The model contains **32.0%** of the original weights **overall** (the embeddings account for a significant part of the model, and they are not pruned by this method).
With a simple resizing of the linear matrices it ran **0.69x as fast as ** on the evaluation.
This is possible because the pruning method lead to structured matrices: to visualize them, hover below on the plot to see the non-zero/zero parts of each matrix.
<div class="graph"><script src="/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/density_info.js" id="4aa5749c-d010-4035-a53c-56838589e97a"></script></div>
In terms of accuracy, its **F1 is 83.22**, compared with 85.85 for , a **F1 drop of 2.63**.
## Fine-Pruning details
This model was fine-tuned from the HuggingFace [model](https://huggingface.co/bert-large-uncased-whole-word-masking) uncased checkpoint on [SQuAD1.1](https://rajpurkar.github.io/SQuAD-explorer), and distilled from the model [madlag/bert-large-uncased-whole-word-masking-finetuned-squadv2](https://huggingface.co/madlag/bert-large-uncased-whole-word-masking-finetuned-squadv2).
This model is case-insensitive: it does not make a difference between english and English.
A side-effect of the block pruning is that some of the attention heads are completely removed: 155 heads were removed on a total of 384 (40.4%).
Here is a detailed view on how the remaining heads are distributed in the network after pruning.
<div class="graph"><script src="/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/pruning_info.js" id="5b65ebec-2c46-46b0-8d5f-2cc30614fe4b"></script></div>
## Details of the SQuAD1.1 dataset
| Dataset | Split | # samples |
| -------- | ----- | --------- |
| SQuAD 2.0 | train | 130.0K |
| SQuAD 2.0 | eval | 11.9k |
### Fine-tuning
- Python: `3.8.5`
- Machine specs:
```CPU: Intel(R) Core(TM) i7-6700K CPU
Memory: 64 GiB
GPUs: 1 GeForce GTX 3090, with 24GiB memory
GPU driver: 455.23.05, CUDA: 11.1
```
### Results
**Pytorch model file size**: `1119M` (original BERT: ``)
| Metric | # Value | # Original ([Table 2](https://www.aclweb.org/anthology/N19-1423.pdf))| Variation |
| ------ | --------- | --------- | --------- |
| **EM** | **80.19** | **82.83** | **-3.64**|
| **F1** | **83.22** | **85.85** | **-2.63**|
```
{
"HasAns_exact": 76.48448043184885,
"HasAns_f1": 82.55514100819374,
"HasAns_total": 5928,
"NoAns_exact": 83.8856181665265,
"NoAns_f1": 83.8856181665265,
"NoAns_total": 5945,
"best_exact": 80.19034784805862,
"best_exact_thresh": 0.0,
"best_f1": 83.22133208932635,
"best_f1_thresh": 0.0,
"exact": 80.19034784805862,
"f1": 83.22133208932645,
"total": 11873
}
```
## Example Usage
Install nn_pruning: it contains the optimization script, which just pack the linear layers into smaller ones by removing empty rows/columns.
`pip install nn_pruning`
Then you can use the `transformers library` almost as usual: you just have to call `optimize_model` when the pipeline has loaded.
```python
from transformers import pipeline
from nn_pruning.inference_model_patcher import optimize_model
qa_pipeline = pipeline(
"question-answering",
model="madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1",
tokenizer="madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1"
)
print("BERT-base parameters: ")
print(f"Parameters count (includes head pruning)={int(qa_pipeline.model.num_parameters() / 1E6)}M")
qa_pipeline.model = optimize_model(qa_pipeline.model, "dense")
print(f"Parameters count after optimization={int(qa_pipeline.model.num_parameters() / 1E6)}M")
predictions = qa_pipeline({
'context': "Frédéric François Chopin, born Fryderyk Franciszek Chopin (1 March 1810 – 17 October 1849), was a Polish composer and virtuoso pianist of the Romantic era who wrote primarily for solo piano.",
'question': "Who is Frederic Chopin?",
})
print("Predictions", predictions)
``` |