File size: 13,338 Bytes
5a091b4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 |
---
license: cc-by-sa-3.0
datasets:
- competition_math
- conceptofmind/cot_submix_original/cot_gsm8k
- knkarthick/dialogsum
- mosaicml/dolly_hhrlhf
- duorc
- tau/scrolls/qasper
- emozilla/quality
- scrolls/summ_screen_fd
- spider
tags:
- Composer
- MosaicML
- llm-foundry
inference: false
---
[![banner](https://maddes8cht.github.io/assets/buttons/Huggingface-banner.jpg)]()
I'm constantly enhancing these model descriptions to provide you with the most relevant and comprehensive information
# mpt-30b-instruct - GGUF
- Model creator: [mosaicml](https://huggingface.co/mosaicml)
- Original model: [mpt-30b-instruct](https://huggingface.co/mosaicml/mpt-30b-instruct)
# Important Update for Falcon Models in llama.cpp Versions After October 18, 2023
As noted on the [Llama.cpp GitHub repository](https://github.com/ggerganov/llama.cpp#hot-topics), all new Llama.cpp releases after October 18, 2023, will require a re-quantization due to the new BPE tokenizer.
**Good news!** I am glad that my re-quantization process for Falcon Models is nearly complete. Download the latest quantized models to ensure compatibility with recent llama.cpp software.
**Key Points:**
- **Stay Informed:** Keep an eye on software application release schedules using llama.cpp libraries.
- **Monitor Upload Times:** Re-quantization is *almost* done. Watch for updates on my Hugging Face Model pages.
**Important Compatibility Note:** Old software will work with old Falcon models, but expect updated software to exclusively support the new models.
This change primarily affects **Falcon** and **Starcoder** models, with other models remaining unaffected.
# About GGUF format
`gguf` is the current file format used by the [`ggml`](https://github.com/ggerganov/ggml) library.
A growing list of Software is using it and can therefore use this model.
The core project making use of the ggml library is the [llama.cpp](https://github.com/ggerganov/llama.cpp) project by Georgi Gerganov
# Quantization variants
There is a bunch of quantized files available. How to choose the best for you:
# Legacy quants
Q4_0, Q4_1, Q5_0, Q5_1 and Q8 are `legacy` quantization types.
Nevertheless, they are fully supported, as there are several circumstances that cause certain model not to be compatible with the modern K-quants.
Falcon 7B models cannot be quantized to K-quants.
# K-quants
K-quants are based on the idea that the quantization of certain parts affects the quality in different ways. If you quantize certain parts more and others less, you get a more powerful model with the same file size, or a smaller file size and lower memory load with comparable performance.
So, if possible, use K-quants.
With a Q6_K you should find it really hard to find a quality difference to the original model - ask your model two times the same question and you may encounter bigger quality differences.
---
# Original Model Card:
# MPT-30B-Instruct
MPT-30B-Instruct is a model for short-form instruction following.
It is built by finetuning [MPT-30B](https://huggingface.co/mosaicml/mpt-30b) on [Dolly HHRLHF](https://huggingface.co/datasets/mosaicml/dolly_hhrlhf) derived from the [Databricks Dolly-15k](https://huggingface.co/datasets/databricks/databricks-dolly-15k) and the [Anthropic Helpful and Harmless (HH-RLHF)](https://huggingface.co/datasets/Anthropic/hh-rlhf) datasets. It is also trained on [Competition Math](https://huggingface.co/datasets/competition_math), [Duorc](https://huggingface.co/datasets/duorc), [CoT GSM8k](https://huggingface.co/datasets/conceptofmind/cot_submix_original), [Qasper](https://huggingface.co/datasets/allenai/qasper), [Quality](https://huggingface.co/datasets/emozilla/quality), [Summ Screen FD](https://huggingface.co/datasets/tau/scrolls) and [Spider](https://huggingface.co/datasets/spider).
* License: _CC-By-SA-3.0_
This model was trained by [MosaicML](https://www.mosaicml.com) and follows a modified decoder-only transformer architecture.
## Model Date
June 22, 2023
## Model License
CC-By-SA-3.0
## Documentation
* [Blog post: Raising the bar for open-source foundation models](https://www.mosaicml.com/blog/mpt-30b)
* [Codebase (mosaicml/llm-foundry repo)](https://github.com/mosaicml/llm-foundry/)
* Questions: Feel free to contact us via the [MosaicML Community Slack](https://mosaicml.me/slack)!
### Example Question/Instruction
**Bespokenizer46**
> I need to convince my friend, Phyllis, that she should train a custom LLM for her Fortune 500 company using the MosaicML Platform.
> Please write an email that explains why MosaicML's emphasis on cutting edge methodology, data privacy, and efficiency are so important.
> End the email with a friendly inquiry about Phyllis's family.
**MPT-30B-Instruct**:
> Phyllis -
> I know you're always looking for ways to improve efficiency at work and I think I've found a solution that you'll be very interested in.
> LLMs are only as good as the data they're trained on and the training process can be very time consuming and resource intensive. MosaicML uses cutting edge methodology to efficiently train high quality models without compromising data privacy.
> They also provide tools to easily connect to and use the model in your daily workflow.
> I think you'd really enjoy speaking with their founder, we can set up a call if you're interested.
> Also, I know it's been a tough year for your family, how are things?
> Best,
> Your Friend
## How to Use
Note: This model requires that `trust_remote_code=True` be passed to the `from_pretrained` method. This is because we use a custom model architecture that is not yet part of the `transformers` package.
It includes options for many training efficiency features such as [FlashAttention (Dao et al. 2022)](https://arxiv.org/pdf/2205.14135.pdf), [ALiBi](https://arxiv.org/abs/2108.12409), QK LayerNorm, and more.
```python
import transformers
model = transformers.AutoModelForCausalLM.from_pretrained(
'mosaicml/mpt-30b-instruct',
trust_remote_code=True
)
```
To use the optimized [triton implementation](https://github.com/openai/triton) of FlashAttention, you can load the model on GPU (`cuda:0`) with `attn_impl='triton'` and with `bfloat16` precision:
```python
import torch
import transformers
name = 'mosaicml/mpt-30b-instruct'
config = transformers.AutoConfig.from_pretrained(name, trust_remote_code=True)
config.attn_config['attn_impl'] = 'triton' # change this to use triton-based FlashAttention
config.init_device = 'cuda:0' # For fast initialization directly on GPU!
model = transformers.AutoModelForCausalLM.from_pretrained(
name,
config=config,
torch_dtype=torch.bfloat16, # Load model weights in bfloat16
trust_remote_code=True
)
```
The model was trained initially on a sequence length of 2048. An additional pre-training phase was included for sequence length adaptation to 8192. However, ALiBi further enables users to increase the maximum sequence length during finetuning and/or inference. For example:
```python
import transformers
name = 'mosaicml/mpt-30b-instruct'
config = transformers.AutoConfig.from_pretrained(name, trust_remote_code=True)
config.max_seq_len = 16384 # (input + output) tokens can now be up to 16384
model = transformers.AutoModelForCausalLM.from_pretrained(
name,
config=config,
trust_remote_code=True
)
```
This model was trained with the MPT-30B tokenizer which is based on the [EleutherAI/gpt-neox-20b](https://huggingface.co/EleutherAI/gpt-neox-20b) tokenizer and includes additional padding and eos tokens.
```python
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('mosaicml/mpt-30b')
```
The model can then be used, for example, within a text-generation pipeline.
Note: when running Torch modules in lower precision, it is best practice to use the [torch.autocast context manager](https://pytorch.org/docs/stable/amp.html).
```python
from transformers import pipeline
with torch.autocast('cuda', dtype=torch.bfloat16):
inputs = tokenizer('Here is a recipe for vegan banana bread:\n', return_tensors="pt").to('cuda')
outputs = model.generate(**inputs, max_new_tokens=100)
print(tokenizer.batch_decode(outputs, skip_special_tokens=True))
# or using the HF pipeline
pipe = pipeline('text-generation', model=model, tokenizer=tokenizer, device='cuda:0')
with torch.autocast('cuda', dtype=torch.bfloat16):
print(
pipe('Here is a recipe for vegan banana bread:\n',
max_new_tokens=100,
do_sample=True,
use_cache=True))
```
### Formatting
This model was trained on data formatted as follows:
```python
def format_prompt(instruction):
template = "Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n###Instruction\n{instruction}\n\n### Response\n"
return template.format(instruction=instruction)
example = "Tell me a funny joke.\nDon't make it too funny though."
fmt_ex = format_prompt(instruction=example)
```
In the above example, `fmt_ex` is ready to be tokenized and sent through the model.
## Model Description
The architecture is a modification of a standard decoder-only transformer.
The model has been modified from a standard transformer in the following ways:
* It uses [FlashAttention](https://arxiv.org/pdf/2205.14135.pdf)
* It uses [ALiBi (Attention with Linear Biases)](https://arxiv.org/abs/2108.12409) and does not use positional embeddings
* It does not use biases
| Hyperparameter | Value |
|----------------|-------|
|n_parameters | 29.95B |
|n_layers | 48 |
| n_heads | 64 |
| d_model | 7168 |
| vocab size | 50432 |
| sequence length | 8192 |
## Data Mix
The model was trained on the following data mix:
| Data Source | Number of Tokens in Source | Proportion |
|-------------|----------------------------|------------|
| competition_math | 1.6 M | 3.66% |
| cot_gsm8k | 3.36 M | 7.67% |
| dialogsum | 0.1 M | 0.23% |
| dolly_hhrlhf | 5.89 M | 13.43% |
| duorc | 7.8 M | 17.80% |
| qasper | 8.72 M | 19.90% |
| quality | 11.29 M | 25.78% |
| scrolls/summ_screen_fd | 4.97 M | 11.33% |
| spider | 0.089 M | 0.20% |
## PreTraining Data
For more details on the pretraining process, see [MPT-30B](https://huggingface.co/mosaicml/mpt-30b).
The data was tokenized using the [EleutherAI/gpt-neox-20b](https://huggingface.co/EleutherAI/gpt-neox-20b) tokenizer.
### Training Configuration
This model was trained on 72 A100 40GB GPUs for 8 hours using the [MosaicML Platform](https://www.mosaicml.com/platform).
The model was trained with sharded data parallelism using [FSDP](https://pytorch.org/docs/stable/fsdp.html) and used the AdamW optimizer.
## Limitations and Biases
_The following language is modified from [EleutherAI's GPT-NeoX-20B](https://huggingface.co/EleutherAI/gpt-neox-20b)_
MPT-30B-Instruct can produce factually incorrect output, and should not be relied on to produce factually accurate information.
MPT-30B-Instruct was trained on various public datasets.
While great efforts have been taken to clean the pretraining data, it is possible that this model could generate lewd, biased or otherwise offensive outputs.
## Acknowledgements
This model was finetuned by Sam Havens, Alex Trott, and the MosaicML NLP team
## MosaicML Platform
If you're interested in [training](https://www.mosaicml.com/training) and [deploying](https://www.mosaicml.com/inference) your own MPT or LLMs on the MosaicML Platform, [sign up here](https://forms.mosaicml.com/demo?utm_source=huggingface&utm_medium=referral&utm_campaign=mpt-30b).
## Disclaimer
The license on this model does not constitute legal advice. We are not responsible for the actions of third parties who use this model. Please consult an attorney before using this model for commercial purposes.
## Citation
Please cite this model using the following format:
```
@online{MosaicML2023Introducing,
author = {MosaicML NLP Team},
title = {Introducing MPT-30B: Raising the bar
for open-source foundation models},
year = {2023},
url = {www.mosaicml.com/blog/mpt-30b},
note = {Accessed: 2023-06-22},
urldate = {2023-06-22}
}
```
***End of original Model File***
---
## Please consider to support my work
**Coming Soon:** I'm in the process of launching a sponsorship/crowdfunding campaign for my work. I'm evaluating Kickstarter, Patreon, or the new GitHub Sponsors platform, and I am hoping for some support and contribution to the continued availability of these kind of models. Your support will enable me to provide even more valuable resources and maintain the models you rely on. Your patience and ongoing support are greatly appreciated as I work to make this page an even more valuable resource for the community.
<center>
[![GitHub](https://maddes8cht.github.io/assets/buttons/github-io-button.png)](https://maddes8cht.github.io)
[![Stack Exchange](https://stackexchange.com/users/flair/26485911.png)](https://stackexchange.com/users/26485911)
[![GitHub](https://maddes8cht.github.io/assets/buttons/github-button.png)](https://github.com/maddes8cht)
[![HuggingFace](https://maddes8cht.github.io/assets/buttons/huggingface-button.png)](https://huggingface.co/maddes8cht)
[![Twitter](https://maddes8cht.github.io/assets/buttons/twitter-button.png)](https://twitter.com/maddes1966)
</center> |