File size: 6,385 Bytes
2eedde8
 
 
 
 
 
 
 
 
 
 
 
0a303a8
2eedde8
 
 
 
 
a2bbf12
 
7f71dac
a2bbf12
dcc8703
a2bbf12
 
 
 
c0f07b9
0e8c023
 
 
2eedde8
 
 
0a303a8
 
2eedde8
 
 
 
 
 
 
 
 
 
a2bbf12
2eedde8
145730e
2eedde8
 
 
a2bbf12
 
 
2eedde8
 
 
a2bbf12
2eedde8
a2bbf12
2eedde8
 
 
0e8c023
145730e
0e8c023
2eedde8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
56ae97c
 
 
145730e
56ae97c
1bf25d2
 
 
 
c0f07b9
ccd7807
2eedde8
 
 
 
 
ccd7807
2eedde8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
---
license: apache-2.0
language:
- fr
pipeline_tag: text-generation
library_name: transformers
tags:
- LLM
inference: false
---
[![banner](https://maddes8cht.github.io/assets/buttons/Huggingface-banner.jpg)]()

I'm constantly enhancing these model descriptions to provide you with the most relevant and comprehensive information

# vigogne-falcon-7b-instruct - GGUF
- Model creator: [bofenghuang](https://huggingface.co/bofenghuang)
- Original model: [vigogne-falcon-7b-instruct](https://huggingface.co/bofenghuang/vigogne-falcon-7b-instruct)

# K-Quants in Falcon 7b models

New releases of Llama.cpp now support K-quantization for previously incompatible models, in particular all Falcon 7B models (While Falcon 40b is and always has been fully compatible with K-Quantisation). This is achieved by employing a fallback solution for model layers that cannot be quantized with real K-quants.

For Falcon 7B models, although only a quarter of the layers can be quantized with true K-quants, this approach still benefits from utilizing *different* legacy quantization types Q4_0, Q4_1, Q5_0, and Q5_1. As a result, it offers better quality at the same file size or smaller file sizes with comparable performance.

So this solution ensures improved performance and efficiency over legacy Q4_0, Q4_1, Q5_0 and Q5_1 Quantizations.




---
# Brief
Vigogne-Falcon-7B-Instruct is a Falcon-7B model fine-tuned to follow the French instructions.


---



# About GGUF format

`gguf` is the current file format used by the [`ggml`](https://github.com/ggerganov/ggml) library.
A growing list of Software is using it and can therefore use this model.
The core project making use of the ggml library is the [llama.cpp](https://github.com/ggerganov/llama.cpp) project by Georgi Gerganov

# Quantization variants

There is a bunch of quantized files available to cater to your specific needs. Here's how to choose the best option for you:

# Legacy quants

Q4_0, Q4_1, Q5_0, Q5_1 and Q8 are `legacy` quantization types.
Nevertheless, they are fully supported, as there are several circumstances that cause certain model not to be compatible with the modern K-quants.
## Note:
Now there's a new option to use K-quants even for previously 'incompatible' models, although this involves some fallback solution that makes them not *real* K-quants. More details can be found in affected model descriptions.
(This mainly refers to Falcon 7b and Starcoder models)

# K-quants

K-quants are designed with the idea that different levels of quantization in specific parts of the model can optimize performance, file size, and memory load.
So, if possible, use K-quants.
With a Q6_K, you'll likely find it challenging to discern a quality difference from the original model - ask your model two times the same question and you may encounter bigger quality differences.




---

# Original Model Card:
<p align="center" width="100%">
<img src="https://huggingface.co/bofenghuang/vigogne-falcon-7b-instruct/resolve/main/vigogne_logo.png" alt="Vigogne" style="width: 40%; min-width: 300px; display: block; margin: auto;">
</p>

# Vigogne-Falcon-7B-Instruct: A French Instruction-following Falcon Model

Vigogne-Falcon-7B-Instruct is a [Falcon-7B](https://huggingface.co/tiiuae/falcon-7b) model fine-tuned to follow the French instructions.

For more information, please visit the Github repo: https://github.com/bofenghuang/vigogne

## Usage

```python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig
from vigogne.preprocess import generate_instruct_prompt

model_name_or_path = "bofenghuang/vigogne-falcon-7b-instruct"

tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, padding_side="right", use_fast=False)
tokenizer.pad_token = tokenizer.eos_token

model = AutoModelForCausalLM.from_pretrained(
    model_name_or_path,
    torch_dtype=torch.float16,
    device_map="auto",
    trust_remote_code=True,
)

user_query = "Expliquez la différence entre DoS et phishing."
prompt = generate_instruct_prompt(user_query)
input_ids = tokenizer(prompt, return_tensors="pt")["input_ids"].to(model.device)
input_length = input_ids.shape[1]

generated_outputs = model.generate(
    input_ids=input_ids,
    generation_config=GenerationConfig(
        temperature=0.1,
        do_sample=True,
        repetition_penalty=1.0,
        max_new_tokens=512,
    ),
    return_dict_in_generate=True,
    pad_token_id=tokenizer.eos_token_id,
    eos_token_id=tokenizer.eos_token_id,
)
generated_tokens = generated_outputs.sequences[0, input_length:]
generated_text = tokenizer.decode(generated_tokens, skip_special_tokens=True)
print(generated_text)
```

You can also infer this model by using the following Google Colab Notebook.

<a href="https://colab.research.google.com/github/bofenghuang/vigogne/blob/main/notebooks/infer_instruct.ipynb" target="_blank"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/></a>

## Limitations

Vigogne is still under development, and there are many limitations that have to be addressed. Please note that it is possible that the model generates harmful or biased content, incorrect information or generally unhelpful answers.

***End of original Model File***
---


## Please consider to support my work
**Coming Soon:** I'm in the process of launching a sponsorship/crowdfunding campaign for my work. I'm evaluating Kickstarter, Patreon, or the new GitHub Sponsors platform, and I am hoping for some support and contribution to the continued availability of these kind of models. Your support will enable me to provide even more valuable resources and maintain the models you rely on. Your patience and ongoing support are greatly appreciated as I work to make this page an even more valuable resource for the community.

<center>

[![GitHub](https://maddes8cht.github.io/assets/buttons/github-io-button.png)](https://maddes8cht.github.io)
[![Stack Exchange](https://stackexchange.com/users/flair/26485911.png)](https://stackexchange.com/users/26485911)
[![GitHub](https://maddes8cht.github.io/assets/buttons/github-button.png)](https://github.com/maddes8cht)
[![HuggingFace](https://maddes8cht.github.io/assets/buttons/huggingface-button.png)](https://huggingface.co/maddes8cht)
[![Twitter](https://maddes8cht.github.io/assets/buttons/twitter-button.png)](https://twitter.com/maddes1966)

</center>