Edit model card

torgo_xlsr_finetune_M05

This model is a fine-tuned version of facebook/wav2vec2-large-xlsr-53 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2781
  • Wer: 0.2436

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Wer
3.5164 0.84 1000 3.3225 1.0
1.535 1.68 2000 1.5429 0.7317
0.8257 2.53 3000 1.3691 0.5730
0.6012 3.37 4000 1.2522 0.4660
0.491 4.21 5000 1.1413 0.4295
0.4401 5.05 6000 1.4117 0.3744
0.3768 5.89 7000 1.3632 0.3531
0.3746 6.73 8000 1.4208 0.3557
0.3127 7.58 9000 1.3584 0.3336
0.2595 8.42 10000 0.9971 0.2878
0.2458 9.26 11000 1.2794 0.3166
0.2638 10.1 12000 1.1851 0.2861
0.2384 10.94 13000 1.2144 0.2810
0.215 11.78 14000 1.1125 0.2623
0.2095 12.63 15000 1.5495 0.3081
0.1939 13.47 16000 1.4090 0.2818
0.1757 14.31 17000 1.3261 0.2564
0.1629 15.15 18000 1.3435 0.2453
0.152 15.99 19000 1.3273 0.2479
0.1516 16.84 20000 1.2215 0.2292
0.155 17.68 21000 1.3536 0.2453
0.135 18.52 22000 1.3292 0.2470
0.1206 19.36 23000 1.2781 0.2436

Framework versions

  • Transformers 4.26.1
  • Pytorch 2.2.1
  • Datasets 2.18.0
  • Tokenizers 0.13.3
Downloads last month
6
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.