torgo_xlsr_finetune_M04
This model is a fine-tuned version of facebook/wav2vec2-large-xlsr-53 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 1.6215
- Wer: 0.2742
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 20
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
3.4822 | 0.84 | 1000 | 3.2714 | 1.0 |
1.8117 | 1.69 | 2000 | 1.6545 | 0.7980 |
0.8407 | 2.53 | 3000 | 1.4796 | 0.5925 |
0.6096 | 3.38 | 4000 | 1.3550 | 0.5331 |
0.4956 | 4.22 | 5000 | 1.4899 | 0.4576 |
0.4388 | 5.07 | 6000 | 1.1873 | 0.3778 |
0.374 | 5.91 | 7000 | 1.2894 | 0.3591 |
0.3569 | 6.76 | 8000 | 1.2815 | 0.3336 |
0.2865 | 7.6 | 9000 | 1.3162 | 0.3073 |
0.2809 | 8.45 | 10000 | 1.4108 | 0.3234 |
0.2455 | 9.29 | 11000 | 1.3710 | 0.2920 |
0.2266 | 10.14 | 12000 | 1.4937 | 0.2946 |
0.2368 | 10.98 | 13000 | 1.5300 | 0.3056 |
0.2229 | 11.82 | 14000 | 1.3822 | 0.2683 |
0.1929 | 12.67 | 15000 | 1.4279 | 0.2683 |
0.1823 | 13.51 | 16000 | 1.5015 | 0.2869 |
0.1678 | 14.36 | 17000 | 1.7070 | 0.3048 |
0.1751 | 15.2 | 18000 | 1.4764 | 0.2844 |
0.1682 | 16.05 | 19000 | 1.2581 | 0.2742 |
0.1607 | 16.89 | 20000 | 1.5641 | 0.2852 |
0.1431 | 17.74 | 21000 | 1.6488 | 0.2742 |
0.1442 | 18.58 | 22000 | 1.5386 | 0.2725 |
0.1147 | 19.43 | 23000 | 1.6215 | 0.2742 |
Framework versions
- Transformers 4.26.1
- Pytorch 2.2.1
- Datasets 2.18.0
- Tokenizers 0.13.3
- Downloads last month
- 0
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.