Edit model card

torgo_xlsr_finetune_M04

This model is a fine-tuned version of facebook/wav2vec2-large-xlsr-53 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.6215
  • Wer: 0.2742

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Wer
3.4822 0.84 1000 3.2714 1.0
1.8117 1.69 2000 1.6545 0.7980
0.8407 2.53 3000 1.4796 0.5925
0.6096 3.38 4000 1.3550 0.5331
0.4956 4.22 5000 1.4899 0.4576
0.4388 5.07 6000 1.1873 0.3778
0.374 5.91 7000 1.2894 0.3591
0.3569 6.76 8000 1.2815 0.3336
0.2865 7.6 9000 1.3162 0.3073
0.2809 8.45 10000 1.4108 0.3234
0.2455 9.29 11000 1.3710 0.2920
0.2266 10.14 12000 1.4937 0.2946
0.2368 10.98 13000 1.5300 0.3056
0.2229 11.82 14000 1.3822 0.2683
0.1929 12.67 15000 1.4279 0.2683
0.1823 13.51 16000 1.5015 0.2869
0.1678 14.36 17000 1.7070 0.3048
0.1751 15.2 18000 1.4764 0.2844
0.1682 16.05 19000 1.2581 0.2742
0.1607 16.89 20000 1.5641 0.2852
0.1431 17.74 21000 1.6488 0.2742
0.1442 18.58 22000 1.5386 0.2725
0.1147 19.43 23000 1.6215 0.2742

Framework versions

  • Transformers 4.26.1
  • Pytorch 2.2.1
  • Datasets 2.18.0
  • Tokenizers 0.13.3
Downloads last month
0
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.