File size: 2,038 Bytes
ab3fdb5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a19089
 
ab3fdb5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9a0bac9
ab3fdb5
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
---
language:
- en
pipeline_tag: text-generation
tags:
- code
---

<h1 align="center"> OpenCodeInterpreter: Integrating Code Generation with Execution and Refinement<h1>

<p align="center">
<img width="1000px" alt="OpenCodeInterpreter" src="https://opencodeinterpreter.github.io/static/images/figure1.png">
</p>
<p align="center">
  <a href="https://opencodeinterpreter.github.io/">[🏠Homepage]</a> 
  |
  <a href="https://github.com/OpenCodeInterpreter/OpenCodeInterpreter/">[🛠️Code]</a> 
</p>
<hr>

## Introduction
OpenCodeInterpreter is a family of open-source code generation systems designed to bridge the gap between large language models and advanced proprietary systems like the GPT-4 Code Interpreter. It significantly advances code generation capabilities by integrating execution and iterative refinement functionalities.

For further information and related work, refer to our paper: ["OpenCodeInterpreter: A System for Enhanced Code Generation and Execution"](https://arxiv.org/abs/2402.14658) available on arXiv.

## Model Usage
### Inference

```python
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
model_path="OpenCodeInterpreter-CL-34B"

tokenizer = AutoTokenizer.from_pretrained(model_path)
model = AutoModelForCausalLM.from_pretrained(
    model_path,
    torch_dtype=torch.bfloat16,
    device_map="auto",
)
model.eval()

prompt = "Write a function to find the shared elements from the given two lists."
inputs = tokenizer.apply_chat_template(
        [{'role': 'user', 'content': prompt }],
        return_tensors="pt"
    ).to(model.device)
outputs = model.generate(
    inputs, 
    max_new_tokens=1024,
    do_sample=False,
    pad_token_id=tokenizer.eos_token_id,
    eos_token_id=tokenizer.eos_token_id,
)
print(tokenizer.decode(outputs[0][len(inputs[0]):], skip_special_tokens=True))
```


## Contact

If you have any inquiries, please feel free to raise an issue or reach out to us via email at: xiangyue.work@gmail.com, zhengtianyu0428@gmail.com. 
We're here to assist you!"