distilbert-base-uncased-finetuned-emotion

This model is a fine-tuned version of distilbert-base-uncased on the emotion dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2155
  • Accuracy: 0.934
  • F1: 0.9338

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
0.1768 1.0 250 0.1867 0.924 0.9235
0.1227 2.0 500 0.1588 0.934 0.9346
0.1031 3.0 750 0.1656 0.931 0.9306
0.0843 4.0 1000 0.1662 0.9395 0.9392
0.0662 5.0 1250 0.1714 0.9325 0.9326
0.0504 6.0 1500 0.1821 0.934 0.9338
0.0429 7.0 1750 0.2038 0.933 0.9324
0.0342 8.0 2000 0.2054 0.938 0.9379
0.0296 9.0 2250 0.2128 0.9345 0.9345
0.0211 10.0 2500 0.2155 0.934 0.9338

Framework versions

  • Transformers 4.18.0
  • Pytorch 1.10.0+cu113
  • Datasets 2.0.0
  • Tokenizers 0.11.6
Downloads last month
131
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Dataset used to train luquesky/distilbert-base-uncased-finetuned-emotion

Evaluation results