Bo Li*1
Yuanhan Zhang*,1
Liangyu Chen*,1
Jinghao Wang*,1
Fanyi Pu*,1
Jingkang Yang1 Chunyuan Li2 Ziwei Liu1
Jingkang Yang1 Chunyuan Li2 Ziwei Liu1
1S-Lab, Nanyang Technological University
2Microsoft Research, Redmond
An example of using this model to run on your video.
Please first clone Otter to your local disk.
Place following script inside the Otter
folder to make sure it has the access to otter/modeling_otter.py
.
import mimetypes
import os
from typing import Union
import cv2
import requests
import torch
import transformers
from PIL import Image
import sys
# make sure you can properly access the otter folder
from otter.modeling_otter import OtterForConditionalGeneration
# Disable warnings
requests.packages.urllib3.disable_warnings()
# ------------------- Utility Functions -------------------
def get_content_type(file_path):
content_type, _ = mimetypes.guess_type(file_path)
return content_type
# ------------------- Image and Video Handling Functions -------------------
def extract_frames(video_path, num_frames=16):
video = cv2.VideoCapture(video_path)
total_frames = int(video.get(cv2.CAP_PROP_FRAME_COUNT))
frame_step = total_frames // num_frames
frames = []
for i in range(num_frames):
video.set(cv2.CAP_PROP_POS_FRAMES, i * frame_step)
ret, frame = video.read()
if ret:
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
frame = Image.fromarray(frame).convert("RGB")
frames.append(frame)
video.release()
return frames
def get_image(url: str) -> Union[Image.Image, list]:
if "://" not in url: # Local file
content_type = get_content_type(url)
else: # Remote URL
content_type = requests.head(url, stream=True, verify=False).headers.get("Content-Type")
if "image" in content_type:
if "://" not in url: # Local file
return Image.open(url)
else: # Remote URL
return Image.open(requests.get(url, stream=True, verify=False).raw)
elif "video" in content_type:
video_path = "temp_video.mp4"
if "://" not in url: # Local file
video_path = url
else: # Remote URL
with open(video_path, "wb") as f:
f.write(requests.get(url, stream=True, verify=False).content)
frames = extract_frames(video_path)
if "://" in url: # Only remove the temporary video file if it was downloaded
os.remove(video_path)
return frames
else:
raise ValueError("Invalid content type. Expected image or video.")
# ------------------- OTTER Prompt and Response Functions -------------------
def get_formatted_prompt(prompt: str) -> str:
return f"<image>User: {prompt} GPT:<answer>"
def get_response(input_data, prompt: str, model=None, image_processor=None, tensor_dtype=None) -> str:
if isinstance(input_data, Image.Image):
vision_x = image_processor.preprocess([input_data], return_tensors="pt")["pixel_values"].unsqueeze(1).unsqueeze(0)
elif isinstance(input_data, list): # list of video frames
vision_x = image_processor.preprocess(input_data, return_tensors="pt")["pixel_values"].unsqueeze(0).unsqueeze(0)
else:
raise ValueError("Invalid input data. Expected PIL Image or list of video frames.")
lang_x = model.text_tokenizer(
[
get_formatted_prompt(prompt),
],
return_tensors="pt",
)
bad_words_id = model.text_tokenizer(["User:", "GPT1:", "GFT:", "GPT:"], add_special_tokens=False).input_ids
generated_text = model.generate(
vision_x=vision_x.to(model.device, dtype=tensor_dtype),
lang_x=lang_x["input_ids"].to(model.device),
attention_mask=lang_x["attention_mask"].to(model.device),
max_new_tokens=512,
num_beams=3,
no_repeat_ngram_size=3,
bad_words_ids=bad_words_id,
)
parsed_output = (
model.text_tokenizer.decode(generated_text[0])
.split("<answer>")[-1]
.lstrip()
.rstrip()
.split("<|endofchunk|>")[0]
.lstrip()
.rstrip()
.lstrip('"')
.rstrip('"')
)
return parsed_output
# ------------------- Main Function -------------------
load_bit = "fp32"
if load_bit == "fp16":
precision = {"torch_dtype": torch.float16}
elif load_bit == "bf16":
precision = {"torch_dtype": torch.bfloat16}
elif load_bit == "fp32":
precision = {"torch_dtype": torch.float32}
# This model version is trained on MIMIC-IT DC dataset.
model = OtterForConditionalGeneration.from_pretrained("luodian/OTTER-9B-DenseCaption", device_map="auto", **precision)
tensor_dtype = {"fp16": torch.float16, "bf16": torch.bfloat16, "fp32": torch.float32}[load_bit]
model.text_tokenizer.padding_side = "left"
tokenizer = model.text_tokenizer
image_processor = transformers.CLIPImageProcessor()
model.eval()
while True:
video_url = input("Enter video path: ") # Replace with the path to your video file, could be any common format.
frames_list = get_image(video_url)
while True:
prompts_input = input("Enter prompts: ")
if prompts_input.lower() == "quit":
break
print(f"\nPrompt: {prompts_input}")
response = get_response(frames_list, prompts_input, model, image_processor, tensor_dtype)
print(f"Response: {response}")
- Downloads last month
- 154
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.