File size: 11,945 Bytes
2609e24 be6e21a 2609e24 be6e21a 2609e24 be6e21a 2609e24 be6e21a 2609e24 be6e21a 2609e24 be6e21a 2609e24 be6e21a 2609e24 be6e21a 2609e24 be6e21a 2609e24 be6e21a 2609e24 be6e21a 2609e24 be6e21a 2609e24 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 |
---
---
# lumaticai/BongLlama-1.1B-Chat-alpha-v0
Introducing BongLlama by LumaticAI. A finetuned version of TinyLlama 1.1B Chat on Bengali Dataset.
<img class="custom-image" src="llama.png" alt="BongLlama">
# Model Details
## Model Description
Bongllama is a sub-part of our company's initiative for developing Indic and Regional Large Language Models. We are LumaticAI continuously working on helping our clients build Custom AI Solutions for their organization.
We have taken an initiative to launch open source models specific to regions and languages.
Bongllama is a LLM built for West Bengal on Bengali dataset. It's a 1.1B parameters model. We have used a Bengali dataset of 10k data i.e lumatic-ai/BongChat-10k-v0 and finetuned on TinyLlama/TinyLlama-1.1B-Chat-v1.0 model to get our BongLlama 1.1B Chat Alpha v0 model.
We are continuously working on training and developing this model and improve it. We are also going to launch this model with various sizes of different LLM's and Datasets.
- **Developed by:** LumaticAI
- **Shared by [Optional]:** LumaticAI
- **Model type:** Language model
- **Language(s) (NLP):** en, bn
- **License:** apache-2.0
- **Parent Model:** TinyLlama/TinyLlama-1.1B-Chat-v1.0
# Uses
## Direct Use
- base model for further finetuning
- get an overview of how indic LLM work on specific language
- for fun
## Downstream Use [Optional]
- can be deployed with api
- used to create webapp or app to show demo
## Out-of-Scope Use
- cannot be used for production purpose
- cannot be used to generate text for research or academic purposes
# Bias, Risks, and Limitations
Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)). Predictions generated by the model may include disturbing and harmful stereotypes across protected classes; identity characteristics; and sensitive, social, and occupational groups.
# Training Details
## Training Data
we used our dataset of 10k data which consists of Questions and Responses. The dataset name is lumatic-ai/BongChat-v0-10k.
**Example Data**
- <|im_start|>user এটি কি ইতিবাচক পর্যালোচনা? এই ফ্র্যাঞ্চাইজি কখনও হার্ট স্টপ স্টান্টস, ফাইট সিকোয়েন্স এবং তারকা শক্তি বন্ধ করে হতাশ করে না।এবার মূল চারটি ছাড়াও নতুন মুখগুলি হলেন আবুয়েলিতা চরিত্রে রিতা মোরেনো এবং দান্তে জেসন মোমোয়া যিনি শোটি চুরি করেছেন।<|im_end|> <|im_start|>assistant এটি একটি খুব ইতিবাচক পর্যালোচনা, এটি ইঙ্গিত করে যে ফ্র্যাঞ্চাইজি শ্রোতাদের জন্য আরও পছন্দসই চরিত্রগুলি যুক্ত করার পাশাপাশি অতীতের প্রত্যাশার ভিত্তিতে বিতরণ করেছে।<|im_end|>
## Training Procedure
### Preprocessing
- Dataset Format
<|im_start|>user <question><|im_end|> <|im_start|>assistant <response><|im_end|>
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.03
- num_epochs: 3
- mixed_precision_training: Native AMP
### Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.16.1
- Tokenizers 0.15.0
# Evaluation
### Metrics
- train/loss
- steps
## Results
||\_runtime|\_timestamp|train/epoch|train/total\_flos|train/train\_loss|train/global\_step|train/train\_steps\_per\_second|train/loss|train/train\_samples\_per\_second|train/train\_runtime|\_step|train/learning\_rate|
|---|---|---|---|---|---|---|---|---|---|---|---|---|
|0|205\.76071906089783|1705483341\.4811552|0\.08|||100||1\.2865|||0|0\.0001869158878504673|
|1|406\.9242510795593|1705483542\.6446872|0\.17|||200||1\.0698|||1|0\.00019964245392895794|
|2|607\.5763952732086|1705483743\.2968314|0\.25|||300||1\.0457|||2|0\.00019846317589644678|
|3|808\.9941129684448|1705483944\.714549|0\.34|||400||1\.0131|||3|0\.00019646988832610704|
|4|1012\.7936038970947|1705484148\.51404|0\.42|||500||1\.0|||4|0\.00019367907001906532|
|5|1217\.8231673240662|1705484353\.5436034|0\.51|||600||0\.9913|||5|0\.0001901137930801933|
|6|1422\.651272058487|1705484558\.3717082|0\.59|||700||0\.9904|||6|0\.00018580353217762766|
|7|1624\.9901471138|1705484760\.7105832|0\.67|||800||0\.9705|||7|0\.0001807839208713596|
|8|1827\.1909170150757|1705484962\.911353|0\.76|||900||0\.9661|||8|0\.00017509645702535999|
|9|2033\.6470217704773|1705485169\.3674579|0\.84|||1000||0\.9588|||9|0\.00016878815973864268|
|10|2241\.5517098903656|1705485377\.272146|0\.93|||1100||0\.9469|||10|0\.00016191118063146672|
|11|2446\.751221895218|1705485582\.471658|1\.01|||1200||0\.9453|||11|0\.0001545223727002313|
|12|2648\.367230653763|1705485784\.0876667|1\.09|||1300||0\.9329|||12|0\.0001466828203054036|
|13|2849\.9791855812073|1705485985\.6996217|1\.18|||1400||0\.9299|||13|0\.0001384573341781387|
|14|3050\.282051086426|1705486186\.0024872|1\.26|||1500||0\.9181|||14|0\.00012991391562044527|
|15|3252\.6823406219482|1705486388\.4027767|1\.35|||1600||0\.917|||15|0\.00012112319432843371|
|16|3456\.3907039165497|1705486592\.11114|1\.43|||1700||0\.919|||16|0\.00011215784448624378|
|17|3658\.387463569641|1705486794\.1078997|1\.52|||1800||0\.9156|||17|0\.00010309198395788984|
|18|3860\.850716114044|1705486996\.5711522|1\.6|||1900||0\.9074|||18|9\.400056154399221e-05|
|19|4063\.906144142151|1705487199\.6265802|1\.68|||2000||0\.9072|||19|8\.49587373690336e-05|
|20|4266\.29203081131|1705487402\.012467|1\.77|||2100||0\.9061|||20|7\.604126152157019e-05|
|21|4468\.759161949158|1705487604\.479598|1\.85|||2200||0\.9104|||21|6\.732185608427e-05|
|22|4671\.109050750732|1705487806\.8294868|1\.94|||2300||0\.9016|||22|5\.8872605662626776e-05|
|23|4875\.181975841522|1705488010\.902412|2\.02|||2400||0\.8957|||23|5\.076336145093832e-05|
|24|5077\.5954213142395|1705488213\.3158574|2\.11|||2500||0\.8948|||24|4\.3061163762223156e-05|
|25|5280\.958572149277|1705488416\.6790082|2\.19|||2600||0\.8833|||25|3\.582968779610564e-05|
|26|5483\.901570320129|1705488619\.6220064|2\.27|||2700||0\.9019|||26|2\.912871722658781e-05|
|27|5684\.498034954071|1705488820\.218471|2\.36|||2800||0\.8921|||27|2\.30136499616351e-05|
|28|5885\.339627027512|1705489021\.0600631|2\.44|||2900||0\.8897|||28|1\.753504016053409e-05|
|29|6089\.49475812912|1705489225\.2151942|2\.53|||3000||0\.8765|||29|1\.2738180295232205e-05|
|30|6291\.281028032303|1705489427\.0014641|2\.61|||3100||0\.889|||30|8\.662726710819169e-06|
|31|6494\.627055644989|1705489630\.3474917|2\.69|||3200||0\.8846|||31|5\.342371780697386e-06|
|32|6695\.168158054352|1705489830\.8885942|2\.78|||3300||0\.8908|||32|2\.804565366782108e-06|
|33|6898\.186992406845|1705490033\.9074285|2\.86|||3400||0\.885|||33|1\.0702878874610523e-06|
|34|7099\.970013856888|1705490235\.69045|2\.95|||3500||0\.8871|||34|1\.5387686939386526e-07|
|35|7221\.330135822296|1705490357\.050572|3\.0|8\.3571998449877e+16|0\.9397975607756582|3561|0\.491||3\.926|7259\.0631|35||
# Model Examination
We will be further finetuning this model on large dataset to see how it performs
# Environmental Impact
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** 1 X Tesla T4
- **Hours used:** 2.21
- **Cloud Provider:** Google Colab
- **Compute Region:** India
- **Carbon Emitted:** 0.14
# Technical Specifications
## Model Architecture and Objective
Finetuned on Tiny-Llama 1.1B Chat model
### Hardware
1 X Tesla T4
# Citation
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
@misc{BongLlama-1.1B-Chat-alpha-v0,
url={[https://huggingface.co/lumatic-ai/BongLlama-1.1B-Chat-alpha-v0](https://huggingface.co/lumatic-ai/BongLlama-1.1B-Chat-alpha-v0)},
title={BongLlama 1.1B Chat Aplha V0},
author={LumaticAI, Rohan Shaw, Vivek Kushal, Jeet Ghosh},
year={2024}, month={Jan}
}
# Model Card Authors
lumatic-ai
# Model Card Contact
email : contact@lumaticai.com
# How to Get Started with the Model
Use the code below to get started with the model.
<details>
<summary> Click to expand </summary>
### Pipeline
```
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from transformers import pipeline
def formatted_prompt(question)-> str:
return f"<|im_start|>user\n{question}<|im_end|>\n<|im_start|>assistant:"
hub_model_name = "lumatic-ai/BongLlama-1.1B-Chat-alpha-v0"
tokenizer = AutoTokenizer.from_pretrained(hub_model_name)
pipe = pipeline(
"text-generation",
model=hub_model_name,
torch_dtype=torch.float16,
device_map="auto",
)
from time import perf_counter
start_time = perf_counter()
prompt = formatted_prompt('হ্যালো')
sequences = pipe(
prompt,
do_sample=True,
temperature=0.1,
top_p=0.9,
num_return_sequences=1,
eos_token_id=tokenizer.eos_token_id,
max_new_tokens=256
)
for seq in sequences:
print(f"Result: {seq['generated_text']}")
output_time = perf_counter() - start_time
print(f"Time taken for inference: {round(output_time,2)} seconds")
```
### Streaming Response (ChatGPT, Bard like)
```
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer
def formatted_prompt(question)-> str:
return f"<|im_start|>user\n{question}<|im_end|>\n<|im_start|>assistant:"
hub_model_name = "lumatic-ai/BongLlama-1.1B-Chat-alpha-v0"
tokenizer = AutoTokenizer.from_pretrained(hub_model_name)
model = AutoModelForCausalLM.from_pretrained(hub_model_name)
prompt = formatted_prompt('prompt here')
inputs = tokenizer([prompt], return_tensors="pt")
streamer = TextStreamer(tokenizer)
_ = model.generate(**inputs, eos_token_id=[tokenizer.eos_token_id],streamer=streamer, max_new_tokens=256)
```
### Using Generation Config
```
import torch
from transformers import GenerationConfig
from time import perf_counter
def formatted_prompt(question)-> str:
return f"<|im_start|>user\n{question}<|im_end|>\n<|im_start|>assistant:"
hub_model_name = "lumatic-ai/BongLlama-1.1B-Chat-alpha-v0"
tokenizer = AutoTokenizer.from_pretrained(hub_model_name)
model = AutoModelForCausalLM.from_pretrained(hub_model_name)
prompt = formatted_prompt('হ্যালো')
# Check for GPU availability
if torch.cuda.is_available():
device = "cuda"
else:
device = "cpu"
# Move model and inputs to the GPU (if available)
model.to(device)
inputs = tokenizer(prompt, return_tensors="pt").to(device)
generation_config = GenerationConfig(
penalty_alpha=0.6,
do_sample=True,
top_k=5,
temperature=0.5,
repetition_penalty=1.2,
max_new_tokens=256,
pad_token_id=tokenizer.eos_token_id
)
start_time = perf_counter()
outputs = model.generate(**inputs, generation_config=generation_config)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
output_time = perf_counter() - start_time
print(f"Time taken for inference: {round(output_time, 2)} seconds")
```
</details> |