File size: 11,945 Bytes
2609e24
 
 
be6e21a
2609e24
be6e21a
2609e24
 
be6e21a
2609e24
 
 
 
 
 
 
 
 
 
 
 
 
be6e21a
 
2609e24
 
 
be6e21a
2609e24
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
be6e21a
2609e24
be6e21a
 
2609e24
 
 
 
 
 
 
 
 
be6e21a
2609e24
 
 
 
 
 
 
 
 
 
 
 
 
 
be6e21a
2609e24
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
be6e21a
2609e24
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
be6e21a
2609e24
 
 
 
 
 
 
 
 
 
 
 
 
 
be6e21a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2609e24
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
---

---
# lumaticai/BongLlama-1.1B-Chat-alpha-v0

Introducing BongLlama by LumaticAI. A finetuned version of TinyLlama 1.1B Chat on Bengali Dataset.


<img class="custom-image" src="llama.png" alt="BongLlama">


# Model Details

## Model Description

Bongllama is a sub-part of our company&#39;s initiative for developing Indic and Regional Large Language Models. We are LumaticAI continuously working on helping our clients build Custom AI Solutions for their organization. 
We have taken an initiative to launch open source models specific to regions and languages.

Bongllama is a LLM built for West Bengal on Bengali dataset. It&#39;s a 1.1B parameters model. We have used a Bengali dataset of 10k data i.e lumatic-ai/BongChat-10k-v0 and finetuned on TinyLlama/TinyLlama-1.1B-Chat-v1.0 model to get our BongLlama 1.1B Chat Alpha v0 model. 

We are continuously working on training and developing this model and improve it. We are also going to launch this model with various sizes of different LLM&#39;s and Datasets.

- **Developed by:** LumaticAI
- **Shared by [Optional]:** LumaticAI
- **Model type:** Language model
- **Language(s) (NLP):** en, bn
- **License:** apache-2.0
- **Parent Model:** TinyLlama/TinyLlama-1.1B-Chat-v1.0


# Uses

## Direct Use

- base model for further finetuning
- get an overview of how indic LLM work on specific language
- for fun


## Downstream Use [Optional]
 
- can be deployed with api
- used to create webapp or app to show demo


## Out-of-Scope Use

- cannot be used for production purpose
- cannot be used to generate text for research or academic purposes


# Bias, Risks, and Limitations

Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)). Predictions generated by the model may include disturbing and harmful stereotypes across protected classes; identity characteristics; and sensitive, social, and occupational groups.


# Training Details

## Training Data

we used our dataset of 10k data which consists of Questions and Responses. The dataset name is lumatic-ai/BongChat-v0-10k.

**Example Data**
- &lt;|im_start|&gt;user এটি কি ইতিবাচক পর্যালোচনা? এই ফ্র্যাঞ্চাইজি কখনও হার্ট স্টপ স্টান্টস, ফাইট সিকোয়েন্স এবং তারকা শক্তি বন্ধ করে হতাশ করে না।এবার মূল চারটি ছাড়াও নতুন মুখগুলি হলেন আবুয়েলিতা চরিত্রে রিতা মোরেনো এবং দান্তে জেসন মোমোয়া যিনি শোটি চুরি করেছেন।&lt;|im_end|&gt; &lt;|im_start|&gt;assistant এটি একটি খুব ইতিবাচক পর্যালোচনা, এটি ইঙ্গিত করে যে ফ্র্যাঞ্চাইজি শ্রোতাদের জন্য আরও পছন্দসই চরিত্রগুলি যুক্ত করার পাশাপাশি অতীতের প্রত্যাশার ভিত্তিতে বিতরণ করেছে।&lt;|im_end|&gt;


## Training Procedure

### Preprocessing

- Dataset Format
&lt;|im_start|&gt;user &lt;question&gt;&lt;|im_end|&gt; &lt;|im_start|&gt;assistant &lt;response&gt;&lt;|im_end|&gt;

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.03
- num_epochs: 3
- mixed_precision_training: Native AMP

### Framework versions

- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.16.1
- Tokenizers 0.15.0
 
# Evaluation

### Metrics

- train/loss
- steps

## Results 

||\_runtime|\_timestamp|train/epoch|train/total\_flos|train/train\_loss|train/global\_step|train/train\_steps\_per\_second|train/loss|train/train\_samples\_per\_second|train/train\_runtime|\_step|train/learning\_rate|
|---|---|---|---|---|---|---|---|---|---|---|---|---|
|0|205\.76071906089783|1705483341\.4811552|0\.08|||100||1\.2865|||0|0\.0001869158878504673|
|1|406\.9242510795593|1705483542\.6446872|0\.17|||200||1\.0698|||1|0\.00019964245392895794|
|2|607\.5763952732086|1705483743\.2968314|0\.25|||300||1\.0457|||2|0\.00019846317589644678|
|3|808\.9941129684448|1705483944\.714549|0\.34|||400||1\.0131|||3|0\.00019646988832610704|
|4|1012\.7936038970947|1705484148\.51404|0\.42|||500||1\.0|||4|0\.00019367907001906532|
|5|1217\.8231673240662|1705484353\.5436034|0\.51|||600||0\.9913|||5|0\.0001901137930801933|
|6|1422\.651272058487|1705484558\.3717082|0\.59|||700||0\.9904|||6|0\.00018580353217762766|
|7|1624\.9901471138|1705484760\.7105832|0\.67|||800||0\.9705|||7|0\.0001807839208713596|
|8|1827\.1909170150757|1705484962\.911353|0\.76|||900||0\.9661|||8|0\.00017509645702535999|
|9|2033\.6470217704773|1705485169\.3674579|0\.84|||1000||0\.9588|||9|0\.00016878815973864268|
|10|2241\.5517098903656|1705485377\.272146|0\.93|||1100||0\.9469|||10|0\.00016191118063146672|
|11|2446\.751221895218|1705485582\.471658|1\.01|||1200||0\.9453|||11|0\.0001545223727002313|
|12|2648\.367230653763|1705485784\.0876667|1\.09|||1300||0\.9329|||12|0\.0001466828203054036|
|13|2849\.9791855812073|1705485985\.6996217|1\.18|||1400||0\.9299|||13|0\.0001384573341781387|
|14|3050\.282051086426|1705486186\.0024872|1\.26|||1500||0\.9181|||14|0\.00012991391562044527|
|15|3252\.6823406219482|1705486388\.4027767|1\.35|||1600||0\.917|||15|0\.00012112319432843371|
|16|3456\.3907039165497|1705486592\.11114|1\.43|||1700||0\.919|||16|0\.00011215784448624378|
|17|3658\.387463569641|1705486794\.1078997|1\.52|||1800||0\.9156|||17|0\.00010309198395788984|
|18|3860\.850716114044|1705486996\.5711522|1\.6|||1900||0\.9074|||18|9\.400056154399221e-05|
|19|4063\.906144142151|1705487199\.6265802|1\.68|||2000||0\.9072|||19|8\.49587373690336e-05|
|20|4266\.29203081131|1705487402\.012467|1\.77|||2100||0\.9061|||20|7\.604126152157019e-05|
|21|4468\.759161949158|1705487604\.479598|1\.85|||2200||0\.9104|||21|6\.732185608427e-05|
|22|4671\.109050750732|1705487806\.8294868|1\.94|||2300||0\.9016|||22|5\.8872605662626776e-05|
|23|4875\.181975841522|1705488010\.902412|2\.02|||2400||0\.8957|||23|5\.076336145093832e-05|
|24|5077\.5954213142395|1705488213\.3158574|2\.11|||2500||0\.8948|||24|4\.3061163762223156e-05|
|25|5280\.958572149277|1705488416\.6790082|2\.19|||2600||0\.8833|||25|3\.582968779610564e-05|
|26|5483\.901570320129|1705488619\.6220064|2\.27|||2700||0\.9019|||26|2\.912871722658781e-05|
|27|5684\.498034954071|1705488820\.218471|2\.36|||2800||0\.8921|||27|2\.30136499616351e-05|
|28|5885\.339627027512|1705489021\.0600631|2\.44|||2900||0\.8897|||28|1\.753504016053409e-05|
|29|6089\.49475812912|1705489225\.2151942|2\.53|||3000||0\.8765|||29|1\.2738180295232205e-05|
|30|6291\.281028032303|1705489427\.0014641|2\.61|||3100||0\.889|||30|8\.662726710819169e-06|
|31|6494\.627055644989|1705489630\.3474917|2\.69|||3200||0\.8846|||31|5\.342371780697386e-06|
|32|6695\.168158054352|1705489830\.8885942|2\.78|||3300||0\.8908|||32|2\.804565366782108e-06|
|33|6898\.186992406845|1705490033\.9074285|2\.86|||3400||0\.885|||33|1\.0702878874610523e-06|
|34|7099\.970013856888|1705490235\.69045|2\.95|||3500||0\.8871|||34|1\.5387686939386526e-07|
|35|7221\.330135822296|1705490357\.050572|3\.0|8\.3571998449877e+16|0\.9397975607756582|3561|0\.491||3\.926|7259\.0631|35||

# Model Examination

We will be further finetuning this model on large dataset to see how it performs

# Environmental Impact

Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).

- **Hardware Type:** 1 X Tesla T4
- **Hours used:** 2.21
- **Cloud Provider:** Google Colab
- **Compute Region:** India
- **Carbon Emitted:** 0.14

# Technical Specifications

## Model Architecture and Objective

Finetuned on Tiny-Llama 1.1B Chat model


### Hardware

1 X Tesla T4


# Citation

<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->

**BibTeX:**

@misc{BongLlama-1.1B-Chat-alpha-v0,
      url={[https://huggingface.co/lumatic-ai/BongLlama-1.1B-Chat-alpha-v0](https://huggingface.co/lumatic-ai/BongLlama-1.1B-Chat-alpha-v0)},
      title={BongLlama 1.1B Chat Aplha V0},
      author={LumaticAI, Rohan Shaw, Vivek Kushal, Jeet Ghosh},
      year={2024}, month={Jan}
}


# Model Card Authors

lumatic-ai

# Model Card Contact

email : contact@lumaticai.com

# How to Get Started with the Model

Use the code below to get started with the model.

<details>
<summary> Click to expand </summary>

### Pipeline

```
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from transformers import pipeline

def formatted_prompt(question)-> str:
    return f"<|im_start|>user\n{question}<|im_end|>\n<|im_start|>assistant:"

hub_model_name = "lumatic-ai/BongLlama-1.1B-Chat-alpha-v0"

tokenizer = AutoTokenizer.from_pretrained(hub_model_name)
pipe = pipeline(
    "text-generation",
    model=hub_model_name,
    torch_dtype=torch.float16,
    device_map="auto",
)

from time import perf_counter
start_time = perf_counter()

prompt = formatted_prompt('হ্যালো')
sequences = pipe(
    prompt,
    do_sample=True,
    temperature=0.1,
    top_p=0.9,
    num_return_sequences=1,
    eos_token_id=tokenizer.eos_token_id,
    max_new_tokens=256
)
for seq in sequences:
    print(f"Result: {seq['generated_text']}")

output_time = perf_counter() - start_time
print(f"Time taken for inference: {round(output_time,2)} seconds")
```

### Streaming Response (ChatGPT, Bard like)

```
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer

def formatted_prompt(question)-> str:
    return f"<|im_start|>user\n{question}<|im_end|>\n<|im_start|>assistant:"

hub_model_name = "lumatic-ai/BongLlama-1.1B-Chat-alpha-v0"

tokenizer = AutoTokenizer.from_pretrained(hub_model_name)
model = AutoModelForCausalLM.from_pretrained(hub_model_name)

prompt = formatted_prompt('prompt here')
inputs = tokenizer([prompt], return_tensors="pt")
streamer = TextStreamer(tokenizer)
_ = model.generate(**inputs, eos_token_id=[tokenizer.eos_token_id],streamer=streamer, max_new_tokens=256)
```

### Using Generation Config

```
import torch
from transformers import GenerationConfig
from time import perf_counter

def formatted_prompt(question)-> str:
    return f"<|im_start|>user\n{question}<|im_end|>\n<|im_start|>assistant:"

hub_model_name = "lumatic-ai/BongLlama-1.1B-Chat-alpha-v0"

tokenizer = AutoTokenizer.from_pretrained(hub_model_name)
model = AutoModelForCausalLM.from_pretrained(hub_model_name)

prompt = formatted_prompt('হ্যালো')

# Check for GPU availability
if torch.cuda.is_available():
    device = "cuda"
else:
    device = "cpu"

# Move model and inputs to the GPU (if available)
model.to(device)
inputs = tokenizer(prompt, return_tensors="pt").to(device)

generation_config = GenerationConfig(
    penalty_alpha=0.6,
    do_sample=True,
    top_k=5,
    temperature=0.5,
    repetition_penalty=1.2,
    max_new_tokens=256,
    pad_token_id=tokenizer.eos_token_id
)

start_time = perf_counter()
outputs = model.generate(**inputs, generation_config=generation_config)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
output_time = perf_counter() - start_time
print(f"Time taken for inference: {round(output_time, 2)} seconds")
```

</details>