File size: 1,778 Bytes
f474bf6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
---
base_model: lukasdrg/clinical_longformer_same_tokens_3epochs_200k
tags:
- generated_from_trainer
model-index:
- name: clinical_longformer_same_tokens_3epochs_260k
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# clinical_longformer_same_tokens_3epochs_260k

This model is a fine-tuned version of [lukasdrg/clinical_longformer_same_tokens_3epochs_200k](https://huggingface.co/lukasdrg/clinical_longformer_same_tokens_3epochs_200k) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.3136

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 2
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 64
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1500
- num_epochs: 1

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 1.5694        | 0.16  | 65   | 1.3390          |
| 1.5048        | 0.31  | 130  | 1.3318          |
| 1.5055        | 0.47  | 195  | 1.3332          |
| 1.5022        | 0.63  | 260  | 1.3198          |
| 1.5237        | 0.78  | 325  | 1.3125          |
| 1.4664        | 0.94  | 390  | 1.3136          |


### Framework versions

- Transformers 4.35.2
- Pytorch 2.1.0+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0