Description

This model is a specialized adaptation of the facebook/bart-large-xsum, fine-tuned for enhanced performance on dialogue summarization using the SamSum dataset.

Development

Usage

from transformers import pipeline

model = pipeline("summarization", model="luisotorres/bart-finetuned-samsum")

conversation = '''Sarah: Do you think it's a good idea to invest in Bitcoin?
    Emily: I'm skeptical. The market is very volatile, and you could lose money.
    Sarah: True. But there's also a high upside, right?                                     
'''
model(conversation)

Training Parameters

evaluation_strategy = "epoch",
save_strategy = 'epoch',
load_best_model_at_end = True,
metric_for_best_model = 'eval_loss',
seed = 42,
learning_rate=2e-5,
per_device_train_batch_size=4,
per_device_eval_batch_size=4,
gradient_accumulation_steps=2,
weight_decay=0.01,
save_total_limit=2,
num_train_epochs=4,
predict_with_generate=True,
fp16=True,
report_to="none"

Reference

This model is based on the original BART architecture, as detailed in:

Lewis et al. (2019). BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension. arXiv:1910.13461

Downloads last month
296
Safetensors
Model size
406M params
Tensor type
F32
Β·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Dataset used to train luisotorres/bart-finetuned-samsum

Spaces using luisotorres/bart-finetuned-samsum 6

Evaluation results