File size: 3,239 Bytes
dc3dfdd
 
 
 
7f2d069
dc3dfdd
 
7f2d069
 
 
 
 
 
 
 
 
dc3dfdd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
## Model Details

Saltlux, AI Labs ์—์„œ ๊ฐœ๋ฐœํ•œ [saltlux/Ko-Llama3-Luxia-8B](https://huggingface.co/saltlux/Ko-Llama3-Luxia-8B) ๋ชจ๋ธ์„ Instruction Fine tuningํ•œ ๋ชจ๋ธ์ž…๋‹ˆ๋‹ค.  
์‚ฌ์šฉ๋œ ๋ฐ์ดํ„ฐ์…‹์œผ๋กœ [maywell/ko_wikidata_QA](https://huggingface.co/datasets/maywell/ko_wikidata_QA)๋ฅผ ์‚ฌ์šฉํ•˜์˜€์œผ๋ฉฐ SFTTrainer๋ฅผ ํ†ตํ•ด 3ep๋กœ ํ•™์Šตํ–ˆ์Šต๋‹ˆ๋‹ค.  
instruction prompt๋Š” Qwen2 ๋ชจ๋ธ๊ณผ ๋™์ผํ•˜๊ฒŒ ์ ์šฉ์‹œ์ผฐ์Šต๋‹ˆ๋‹ค.

```python
<|im_start|>system
You are a helpful assistant.<|im_end|>
<|im_start|>user
What is the Qwen2?<|im_end|>
<|im_start|>assistant
Qwen2 is the new series of Qwen large language models<|im_end|>
<|im_start|>user
Tell me more<|im_end|>
<|im_start|>assistant
```

## HyperParameter
- num_train_epochs = 3
- warmup_steps=0.03
- learning_rate=1e-5
- optim="adamw_torch_fused"

## Evaluation with Langchain
apply_chat_tempalte์ด ์ ์šฉ๋˜์–ด์žˆ์ง€ ์•Š์•„ ๋žญ์ฒด์ธ์—์„œ ํ”„๋กฌํ”„ํŠธ๋กœ ์ง์ ‘ ์ž…๋ ฅํ•˜์—ฌ ํ‰๊ฐ€ํ•ด ๋ณผ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.  

```python
model_id = "lubocido/Ko-Llama3-Luxia-8B-it"
device = "cuda:0"

tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id,, device_map = device, torch_dtype = torch.bfloat16)

tokenizer.padding_side = 'right'
tokenizer.pad_token = tokenizer.eos_token

sys_message = """๋‹น์‹ ์€ ์นœ์ ˆํ•œ ์ฑ—๋ด‡์œผ๋กœ์„œ ์ƒ๋Œ€๋ฐฉ์˜ ์š”์ฒญ์— ์ตœ๋Œ€ํ•œ ์ž์„ธํ•˜๊ณ  ์นœ์ ˆํ•˜๊ฒŒ ๋‹ตํ•ด์•ผํ•ฉ๋‹ˆ๋‹ค. 
์‚ฌ์šฉ์ž๊ฐ€ ์ œ๊ณตํ•˜๋Š” ์ •๋ณด๋ฅผ ์„ธ์‹ฌํ•˜๊ฒŒ ๋ถ„์„ํ•˜์—ฌ ์‚ฌ์šฉ์ž์˜ ์˜๋„๋ฅผ ์‹ ์†ํ•˜๊ฒŒ ํŒŒ์•…ํ•˜๊ณ  ๊ทธ์— ๋”ฐ๋ผ ๋‹ต๋ณ€์„ ์ƒ์„ฑํ•ด์•ผํ•ฉ๋‹ˆ๋‹ค.
ํ•ญ์ƒ ๋งค์šฐ ์ž์—ฐ์Šค๋Ÿฌ์šด ํ•œ๊ตญ์–ด๋กœ ์‘๋‹ตํ•˜์„ธ์š”."""

question = "๋ฆฌ๋ˆ…์Šค์—์„œ ํ”„๋กœ์„ธ์Šค๋ฅผ ์ฃฝ์ด๋Š” ๋ช…๋ น์–ด๊ฐ€ ๋ญ์ง€?"

template = """
<|im_start|>system\n{sys_message}<|im_end|>
<|im_start|>user\n{question}<|im_end|>
<|im_start|>assistant
"""

input_data = {
    'sys_message' : sys_message,
    'question' : question,
}

prompt = PromptTemplate(template=template, input_variables=['sys_message', 'question'])

pipe = pipeline('text-generation', model=model, tokenizer=tokenizer, device_map=device, do_sample = True, max_length = 512, temperature = 0.1, repetition_penalty=1.2, num_beams=1,top_k=20,top_p=0.9)

langchain_pipeline = HuggingFacePipeline(pipeline=pipe)

chains = LLMChain(llm=langchain_pipeline, prompt=prompt, output_parser=StrOutputParser(), verbose=True)

print(chains.invoke(input=input_data)['text'])
```

```
<|im_start|>user
๋ฆฌ๋ˆ…์Šค์—์„œ ํ”„๋กœ์„ธ์Šค๋ฅผ ์ฃฝ์ด๋Š” ๋ช…๋ น์–ด๊ฐ€ ๋ญ์ง€?<|im_end|>
<|im_start|>assistant
ํ”„๋กœ์„ธ์Šค๋Š” ์šด์˜ ์ฒด์ œ๊ฐ€ ์‹คํ–‰ ์ค‘์ธ ํ”„๋กœ๊ทธ๋žจ์œผ๋กœ, ํ”„๋กœ์„ธ์Šค ID(PID)๋ผ๋Š” ๊ณ ์œ ํ•œ ์‹๋ณ„์ž๋ฅผ ๊ฐ€์ง€๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค.
ํ”„๋กœ์„ธ์Šค๊ฐ€ ์ข…๋ฃŒ๋˜๋ฉด ์‹œ์Šคํ…œ ์ž์›์ด ํ•ด์ œ๋ฉ๋‹ˆ๋‹ค.   ๋ฆฌ๋ˆ…์Šค์˜ ๊ฒฝ์šฐ kill ๋ช…๋ น์–ด๋ฅผ ํ†ตํ•ด ํ”„๋กœ์„ธ์Šค๋ฅผ ์ข…๋ฃŒํ•  ์ˆ˜ ์žˆ์œผ๋ฉฐ, ์ด ๋ช…๋ น์–ด๋Š” PID ๋˜๋Š” ์ด๋ฆ„๊ณผ ๊ฐ™์€ ๋‹ค์–‘ํ•œ ๋ฐฉ๋ฒ•์œผ๋กœ ํ”„๋กœ์„ธ์Šค๋ฅผ ์ฐพ์•„์„œ ์ข…๋ฃŒ์‹œํ‚ฌ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
๋˜ํ•œ SIGKILL ์‹ ํ˜ธ๋ฅผ ๋ณด๋‚ด๊ฑฐ๋‚˜ -9 ์˜ต์…˜์„ ์‚ฌ์šฉํ•˜๋ฉด ๊ฐ•์ œ์ ์œผ๋กœ ํ”„๋กœ์„ธ์Šค๋ฅผ ์ข…๋ฃŒํ•  ์ˆ˜๋„ ์žˆ์Šต๋‹ˆ๋‹ค.
๊ทธ๋Ÿฌ๋‚˜ ์ผ๋ถ€ ํ”„๋กœ์„ธ์Šค๋Š” ๊ฐ•์ œ ์ข…๋ฃŒ๋  ๋•Œ ๋ฌธ์ œ๋ฅผ ์ผ์œผํ‚ฌ ์ˆ˜ ์žˆ์œผ๋ฏ€๋กœ ์ฃผ์˜ํ•ด์„œ ์‚ฌ์šฉํ•ด์•ผ ํ•ฉ๋‹ˆ๋‹ค.<|im_end|>
```