File size: 1,718 Bytes
d8295c1
 
 
 
eace147
d8295c1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eace147
 
 
 
d8295c1
 
 
 
 
616ed85
 
d8295c1
 
616ed85
d8295c1
 
 
 
 
 
 
 
eace147
d8295c1
 
 
 
 
 
 
 
 
 
 
eace147
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
---
tags:
- generated_from_trainer
datasets:
- google/fleurs
metrics:
- wer
model-index:
- name: xls-r-fleurs_nl-run4
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: audiofolder
      type: audiofolder
      config: default
      split: validation
      args: default
    metrics:
    - name: Wer
      type: wer
      value: 0.46057420137484834
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# xls-r-fleurs_nl-run4

This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the FLEURS (nl) dataset.
It achieves the following results:
- Wer (Validation): 42.94%
- Wer (Test): 43.74%

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 30
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Wer (Train)    |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.1216        | 1.55  | 100  | 0.5803          | 0.4294 |
| 0.0775        | 3.1   | 200  | 0.6325          | 0.4420 |
| 0.0705        | 4.65  | 300  | 0.6473          | 0.4606 |


### Framework versions

- Transformers 4.28.0
- Pytorch 2.0.1+cu117
- Datasets 2.14.4
- Tokenizers 0.13.3