lucas-meyer commited on
Commit
eace147
1 Parent(s): d8295c1

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +7 -21
README.md CHANGED
@@ -2,7 +2,7 @@
2
  tags:
3
  - generated_from_trainer
4
  datasets:
5
- - audiofolder
6
  metrics:
7
  - wer
8
  model-index:
@@ -28,24 +28,10 @@ should probably proofread and complete it, then remove this comment. -->
28
 
29
  # xls-r-fleurs_nl-run4
30
 
31
- This model was trained from scratch on the audiofolder dataset.
32
- It achieves the following results on the evaluation set:
33
- - Loss: 0.6473
34
- - Wer: 0.4606
35
-
36
- ## Model description
37
-
38
- More information needed
39
-
40
- ## Intended uses & limitations
41
-
42
- More information needed
43
-
44
- ## Training and evaluation data
45
-
46
- More information needed
47
-
48
- ## Training procedure
49
 
50
  ### Training hyperparameters
51
 
@@ -64,7 +50,7 @@ The following hyperparameters were used during training:
64
 
65
  ### Training results
66
 
67
- | Training Loss | Epoch | Step | Validation Loss | Wer |
68
  |:-------------:|:-----:|:----:|:---------------:|:------:|
69
  | 0.1216 | 1.55 | 100 | 0.5803 | 0.4294 |
70
  | 0.0775 | 3.1 | 200 | 0.6325 | 0.4420 |
@@ -76,4 +62,4 @@ The following hyperparameters were used during training:
76
  - Transformers 4.28.0
77
  - Pytorch 2.0.1+cu117
78
  - Datasets 2.14.4
79
- - Tokenizers 0.13.3
 
2
  tags:
3
  - generated_from_trainer
4
  datasets:
5
+ - google/fleurs
6
  metrics:
7
  - wer
8
  model-index:
 
28
 
29
  # xls-r-fleurs_nl-run4
30
 
31
+ This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the FLEURS (nl) dataset.
32
+ It achieves the following results:
33
+ - Wer (Validation): 42.94%
34
+ - Wer (Test): 43.74%
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35
 
36
  ### Training hyperparameters
37
 
 
50
 
51
  ### Training results
52
 
53
+ | Training Loss | Epoch | Step | Validation Loss | Wer (Train) |
54
  |:-------------:|:-----:|:----:|:---------------:|:------:|
55
  | 0.1216 | 1.55 | 100 | 0.5803 | 0.4294 |
56
  | 0.0775 | 3.1 | 200 | 0.6325 | 0.4420 |
 
62
  - Transformers 4.28.0
63
  - Pytorch 2.0.1+cu117
64
  - Datasets 2.14.4
65
+ - Tokenizers 0.13.3