seq-xls-r-fleurs_nl-run2-asr_af-run2

This model is a fine-tuned version of lucas-meyer/xls-r-fleurs_nl-run2 on the asr_af dataset. It achieves the following results:

  • Wer (Validation): 38.75%
  • Wer (Test): 38.66%

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 3
  • total_train_batch_size: 12
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 30
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer (Train)
7.6065 0.44 100 3.3086 1.0
3.055 0.88 200 2.9676 0.9998
2.7713 1.32 300 1.9810 0.9998
1.3251 1.76 400 0.8096 0.6136
0.7431 2.2 500 0.6821 0.5622
0.5789 2.64 600 0.5596 0.5133
0.4866 3.08 700 0.4707 0.4381
0.3558 3.52 800 0.4653 0.4353
0.3362 3.96 900 0.4878 0.4235
0.2631 4.41 1000 0.4621 0.3907
0.2667 4.85 1100 0.4746 0.3841
0.2464 5.29 1200 0.4383 0.3780
0.205 5.73 1300 0.4207 0.3877
0.1939 6.17 1400 0.4490 0.3746
0.1644 6.61 1500 0.4325 0.3549
0.1782 7.05 1600 0.4699 0.3791

Framework versions

  • Transformers 4.28.0
  • Pytorch 2.0.1+cu117
  • Datasets 2.14.4
  • Tokenizers 0.13.3
Downloads last month
5
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train lucas-meyer/seq-xls-r-fleurs_nl-run2-asr_af-run2