File size: 2,871 Bytes
576d7e5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 |
---
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: twitter-roberta-base-sentiment-latest-finetuned-FG-CONCAT_SENTENCE-H-NEWS
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# twitter-roberta-base-sentiment-latest-finetuned-FG-CONCAT_SENTENCE-H-NEWS
This model is a fine-tuned version of [cardiffnlp/twitter-roberta-base-sentiment-latest](https://huggingface.co/cardiffnlp/twitter-roberta-base-sentiment-latest) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 3.6335
- Accuracy: 0.5275
- F1: 0.5198
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 12
- eval_batch_size: 12
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| No log | 1.0 | 61 | 1.0568 | 0.4396 | 0.2684 |
| No log | 2.0 | 122 | 1.0518 | 0.4396 | 0.2684 |
| No log | 3.0 | 183 | 1.0584 | 0.4396 | 0.2684 |
| No log | 4.0 | 244 | 1.1720 | 0.3956 | 0.3223 |
| No log | 5.0 | 305 | 1.2473 | 0.5275 | 0.5196 |
| No log | 6.0 | 366 | 1.0789 | 0.5220 | 0.5301 |
| No log | 7.0 | 427 | 1.3556 | 0.5604 | 0.5426 |
| No log | 8.0 | 488 | 1.7314 | 0.5330 | 0.5158 |
| 0.8045 | 9.0 | 549 | 2.2774 | 0.5330 | 0.5161 |
| 0.8045 | 10.0 | 610 | 2.8362 | 0.4451 | 0.4512 |
| 0.8045 | 11.0 | 671 | 2.9130 | 0.5275 | 0.4931 |
| 0.8045 | 12.0 | 732 | 3.1023 | 0.5110 | 0.5010 |
| 0.8045 | 13.0 | 793 | 3.2670 | 0.5385 | 0.5208 |
| 0.8045 | 14.0 | 854 | 3.4151 | 0.4945 | 0.4856 |
| 0.8045 | 15.0 | 915 | 3.7614 | 0.4615 | 0.4458 |
| 0.8045 | 16.0 | 976 | 3.5224 | 0.5220 | 0.5122 |
| 0.0535 | 17.0 | 1037 | 3.5196 | 0.5165 | 0.5102 |
| 0.0535 | 18.0 | 1098 | 3.5791 | 0.5110 | 0.5039 |
| 0.0535 | 19.0 | 1159 | 3.6220 | 0.5220 | 0.5137 |
| 0.0535 | 20.0 | 1220 | 3.6335 | 0.5275 | 0.5198 |
### Framework versions
- Transformers 4.16.2
- Pytorch 1.9.1
- Datasets 1.18.4
- Tokenizers 0.11.6
|