lucaordronneau
commited on
Commit
•
576d7e5
1
Parent(s):
6c7dcc4
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- generated_from_trainer
|
4 |
+
metrics:
|
5 |
+
- accuracy
|
6 |
+
- f1
|
7 |
+
model-index:
|
8 |
+
- name: twitter-roberta-base-sentiment-latest-finetuned-FG-CONCAT_SENTENCE-H-NEWS
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# twitter-roberta-base-sentiment-latest-finetuned-FG-CONCAT_SENTENCE-H-NEWS
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [cardiffnlp/twitter-roberta-base-sentiment-latest](https://huggingface.co/cardiffnlp/twitter-roberta-base-sentiment-latest) on an unknown dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 3.6335
|
20 |
+
- Accuracy: 0.5275
|
21 |
+
- F1: 0.5198
|
22 |
+
|
23 |
+
## Model description
|
24 |
+
|
25 |
+
More information needed
|
26 |
+
|
27 |
+
## Intended uses & limitations
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Training and evaluation data
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Training procedure
|
36 |
+
|
37 |
+
### Training hyperparameters
|
38 |
+
|
39 |
+
The following hyperparameters were used during training:
|
40 |
+
- learning_rate: 6e-05
|
41 |
+
- train_batch_size: 12
|
42 |
+
- eval_batch_size: 12
|
43 |
+
- seed: 42
|
44 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
45 |
+
- lr_scheduler_type: linear
|
46 |
+
- num_epochs: 20
|
47 |
+
|
48 |
+
### Training results
|
49 |
+
|
50 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|
51 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
|
52 |
+
| No log | 1.0 | 61 | 1.0568 | 0.4396 | 0.2684 |
|
53 |
+
| No log | 2.0 | 122 | 1.0518 | 0.4396 | 0.2684 |
|
54 |
+
| No log | 3.0 | 183 | 1.0584 | 0.4396 | 0.2684 |
|
55 |
+
| No log | 4.0 | 244 | 1.1720 | 0.3956 | 0.3223 |
|
56 |
+
| No log | 5.0 | 305 | 1.2473 | 0.5275 | 0.5196 |
|
57 |
+
| No log | 6.0 | 366 | 1.0789 | 0.5220 | 0.5301 |
|
58 |
+
| No log | 7.0 | 427 | 1.3556 | 0.5604 | 0.5426 |
|
59 |
+
| No log | 8.0 | 488 | 1.7314 | 0.5330 | 0.5158 |
|
60 |
+
| 0.8045 | 9.0 | 549 | 2.2774 | 0.5330 | 0.5161 |
|
61 |
+
| 0.8045 | 10.0 | 610 | 2.8362 | 0.4451 | 0.4512 |
|
62 |
+
| 0.8045 | 11.0 | 671 | 2.9130 | 0.5275 | 0.4931 |
|
63 |
+
| 0.8045 | 12.0 | 732 | 3.1023 | 0.5110 | 0.5010 |
|
64 |
+
| 0.8045 | 13.0 | 793 | 3.2670 | 0.5385 | 0.5208 |
|
65 |
+
| 0.8045 | 14.0 | 854 | 3.4151 | 0.4945 | 0.4856 |
|
66 |
+
| 0.8045 | 15.0 | 915 | 3.7614 | 0.4615 | 0.4458 |
|
67 |
+
| 0.8045 | 16.0 | 976 | 3.5224 | 0.5220 | 0.5122 |
|
68 |
+
| 0.0535 | 17.0 | 1037 | 3.5196 | 0.5165 | 0.5102 |
|
69 |
+
| 0.0535 | 18.0 | 1098 | 3.5791 | 0.5110 | 0.5039 |
|
70 |
+
| 0.0535 | 19.0 | 1159 | 3.6220 | 0.5220 | 0.5137 |
|
71 |
+
| 0.0535 | 20.0 | 1220 | 3.6335 | 0.5275 | 0.5198 |
|
72 |
+
|
73 |
+
|
74 |
+
### Framework versions
|
75 |
+
|
76 |
+
- Transformers 4.16.2
|
77 |
+
- Pytorch 1.9.1
|
78 |
+
- Datasets 1.18.4
|
79 |
+
- Tokenizers 0.11.6
|