File size: 82,482 Bytes
d87a382 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 |
"""
Author: Eric Lin (xihlin)
"""
"""
... note(bapatra)::
This is written as one big file, instead of splitting into logical components because I was running into issues with transformers auto module
imports when splitting into different files. I've tried keeping the logical partitions demarkated with comment blocks, but it is not ideal.
In the future, would be really good to revisit this and refactor into a more readable file structure.
"""
from typing import TypeVar
from functools import lru_cache
import math
import pytest
import torch
import numpy as np
import triton
import triton.language as tl
import os
import dataclasses
Phi3SmallConfig = TypeVar('Phi3SmallConfig')
# triton 2.0.0: fail at backward on A100, for the examples, if h_dim=128.
# Done
# 1. strided of qkv
# 2. seq len not power of 2
# 3. bf16 with Triton May, 2023
# TODO:
# 1. wip: support non-contiguous backward, also help reduce memory allocation in training (q, k, v split)
# 2. block sparse with different BLOCK_M, BLOCK_N?
# 3. for Lq not divided by BLOCK_M, BLOCK_N, only apply mask to K/V on last batch, still need to apply mask on Q.
# Attempt, fail to compile
# 4. For 2nd iter of inference, BLOCK_M=1, how to make things work? K/V maynot divided by BLOCK_N.
# 5. The inner loop can also be paralled via bigger num_stage(better) or on different thread-block (via m/L and atomic update, but this no-comm/sync between blocks)
###########################################################
################### Kernel Parameters #####################
###########################################################
@dataclasses.dataclass
class BlockSparseParams(object):
block_size: int
kernel_block_size: int
num_local_blocks: int
vert_stride: int
homo_head_pattern: bool = False
@classmethod
def from_config(cls, config: Phi3SmallConfig) -> "BlockSparseParams":
return cls(
block_size=config.blocksparse_block_size,
kernel_block_size=config.blocksparse_triton_kernel_block_size,
num_local_blocks=config.blocksparse_num_local_blocks,
vert_stride=config.blocksparse_vert_stride,
homo_head_pattern=config.blocksparse_homo_head_pattern,
)
###########################################################
###########################################################
###########################################################
################### Utility Functions #####################
###########################################################
# helper functions for 3D sparse pattern
# these function are not optimized and very inefficient. Avoid calling them too frequent.
# currently, it is only called within `get_local_strided_sparse_attention_op`, which is cached.
def dense_to_crow_col(x):
''' Turning a 2D/3D torch tensor (x) to CSR rows/cols indexing.
param:
TODO:
1. improve efficiency, is it faster if done in CPU, or customize a cuda kernel for it?
NOTE: col_indices padded -1
'''
pad = -1
dim = x.dim()
assert x.dim() in (2, 3)
if x.dim() == 2:
x = x[None]
x = [xi.to_sparse_csr() for xi in x]
crows = torch.vstack([xi.crow_indices() for xi in x])
cols = [xi.col_indices() for xi in x]
max_cols = max(len(xi) for xi in cols)
cols = [torch.cat([xi, pad + xi.new_zeros(max_cols - xi.shape[0])]) for xi in cols]
cols = torch.vstack(cols)
if dim == 2:
crows = crows[0]
cols = cols[0]
return crows, cols
def crow_col_to_dense(crows, cols, dtype=torch.float16):
dim = crows.dim()
if dim == 1:
crows = crows[None]
cols = cols[None]
device = crows.device
crows, cols = crows.cpu(), cols.cpu() # faster in cpu
shape = (crows.shape[0], crows.shape[1] - 1, cols.max() + 1)
x = torch.zeros(shape, dtype=dtype)
for i in range(shape[0]):
for j in range(shape[1]):
x[i, j, cols[i, crows[i, j]:crows[i, j+1]]] = 1
if dim == 1:
x = x[0]
return x.to(device)
def dense_to_ccol_row(x):
'''Similar, but to CSC format
'''
x = x.transpose(-2, -1)
return dense_to_crow_col(x)
def ccol_row_to_dense(ccol, rows, dtype=torch.float16):
return crow_col_to_dense(ccol, rows, dtype).permute(0, 2, 1).contiguous()
def _get_sparse_attn_mask_homo_head(q_len, N_CTX, dtype, device, BLOCK=128, local_blocks=4, vert_stride=4, return_dense=False):
'''
:return: a tuple of 3:
- tuple of crow_indices, col_indices representation of CSR format.
- block dense mask
- all token dense mask (be aware that it can be OOM if it is too big) if `return_dense==True`, otherwise, None
'''
with torch.no_grad():
N_BLOCK = triton.cdiv(N_CTX, BLOCK)
q_pos = torch.arange(N_BLOCK)[:, None]
k_pos = torch.arange(N_BLOCK)[None]
mask_vert_strided = (torch.arange(N_BLOCK) + 1) % vert_stride == 0
block_mask_dense = ((q_pos >= k_pos) & ((q_pos - k_pos < local_blocks) | mask_vert_strided)).to(device).to(dtype)
N_BLOCK_Q = triton.cdiv(q_len, BLOCK)
block_mask_dense_output = block_mask_dense[-N_BLOCK_Q:].contiguous().to_sparse_csr()
if return_dense:
mask_dense = torch.kron(block_mask_dense, block_mask_dense.new_ones((BLOCK, BLOCK)))
causal_mask = torch.tril(torch.ones(N_CTX, N_CTX)).type_as(mask_dense)[-q_len:]
mask_dense = mask_dense[-q_len:, :N_CTX] * causal_mask
return (block_mask_dense_output.crow_indices(), block_mask_dense_output.col_indices()), block_mask_dense, mask_dense
else:
return (block_mask_dense_output.crow_indices(), block_mask_dense_output.col_indices()), block_mask_dense, None
def _get_sparse_attn_mask(n_heads, q_len, N_CTX, dtype, device, BLOCK=128, local_blocks=4, vert_stride=4, homo_head=True, return_dense=False):
'''
:return: a tuple of 3:
- tuple of crow_indices, col_indices representation of CSR format.
- block dense mask
- all token dense mask (be aware that it can be OOM if it is too big) if `return_dense==True`, otherwise, None
'''
if homo_head:
with torch.no_grad():
(crow, col), block_mask_dense, mask_dense = _get_sparse_attn_mask_homo_head(q_len, N_CTX, dtype, device, BLOCK, local_blocks, vert_stride, return_dense)
crow = crow[None].expand(n_heads, crow.shape[0])
col = col[None].expand(n_heads, col.shape[0])
if return_dense:
mask_dense = mask_dense[None].expand(n_heads, *mask_dense.shape)
return (crow, col), block_mask_dense, mask_dense
with torch.no_grad():
N_BLOCK = triton.cdiv(N_CTX, BLOCK)
q_pos = torch.arange(N_BLOCK)[None, :, None]
k_pos = torch.arange(N_BLOCK)[None, None]
head_sliding_step = max(1, int(vert_stride / n_heads)) # if vert_stride <= n_heads, rotating the heads
mask_vert_strided = [(torch.arange(N_BLOCK) + h * head_sliding_step + 1) % vert_stride == 0 for h in range(n_heads)]
mask_vert_strided = torch.vstack(mask_vert_strided).unsqueeze(1)
block_mask_dense = ((q_pos >= k_pos) & ((q_pos - k_pos < local_blocks) | mask_vert_strided)).to(device).to(dtype)
N_BLOCK_Q = triton.cdiv(q_len, BLOCK)
block_mask_dense_output = block_mask_dense[:, -N_BLOCK_Q:]
if return_dense:
mask_dense = torch.kron(block_mask_dense, block_mask_dense.new_ones((BLOCK, BLOCK)))
causal_mask = torch.tril(torch.ones(N_CTX, N_CTX)).type_as(mask_dense)[-q_len:]
mask_dense = mask_dense[..., -q_len:, :N_CTX] * causal_mask[None]
return dense_to_crow_col(block_mask_dense_output), block_mask_dense, mask_dense
else:
return dense_to_crow_col(block_mask_dense_output), block_mask_dense, None
def get_sparse_attn_mask(q, N_CTX, *args, **kwargs):
return _get_sparse_attn_mask(q.size(1), q.size(2), N_CTX, q.dtype, q.device, *args, **kwargs)
###########################################################
###########################################################
###########################################################
###################### Training Kernels ###################
###########################################################
# TODO: only apply loading/saving mask on the last iteration for EVEN_N_BLOCK, useful for 1st iteration of inference.
# Experiment failed inside loop.
# Another idea: only on saving? load even out of boundary(will it causes illegal access error)?
@triton.jit
def _fwd_kernel(
Q, K, V, sm_scale,
layout_crow_ptr,
layout_col_ptr,
layout_crow_stride_h, layout_crow_stride_m,
layout_col_stride_h, layout_col_stride_m,
TMP, L, M, # NOTE: TMP is a scratchpad buffer to workaround a compiler bug. TMP, L, M are assumed to have contiguous layouts
Out,
stride_qz, stride_qh, stride_qm, stride_qd,
stride_kz, stride_kh, stride_kn, stride_kd,
stride_vz, stride_vh, stride_vn, stride_vd,
stride_oz, stride_oh, stride_om, stride_od,
Z, H, N_CTX,
PAST_LEN,
Q_ROUNDED_LEN,
BLOCK_M: tl.constexpr, BLOCK_DMODEL: tl.constexpr,
BLOCK_N: tl.constexpr,
EVEN_M_BLOCK: tl.constexpr,
EVEN_N_BLOCK: tl.constexpr,
INFERENCE: tl.constexpr,
NUM_DBLOCKS: tl.constexpr,
):
Q_LEN = N_CTX - PAST_LEN
start_m = tl.program_id(0)
off_hz = tl.program_id(1)
off_h = off_hz % H
off_z = off_hz // H
Q += off_z * stride_qz + off_h * stride_qh
K += off_z * stride_kz + off_h * stride_kh
V += off_z * stride_vz + off_h * stride_vh
# initialize offsets
offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M)
offs_n = tl.arange(0, BLOCK_N)
offs_d = tl.arange(0, BLOCK_DMODEL)
off_q = offs_m[:, None] * stride_qm + offs_d[None, :] * stride_qd
# off_k = offs_n[:, None] * stride_kn + offs_d[None, :] * stride_kd
off_k = offs_n[None, :] * stride_kn + offs_d[:, None] * stride_kd
off_v = offs_n[:, None] * stride_vn + offs_d[None, :] * stride_vd
# Initialize pointers to Q, K, V
q_ptrs = Q + off_q
k_ptrs = K + off_k
v_ptrs = V + off_v
# initialize pointer to m and l
t_ptrs = TMP + off_hz * Q_ROUNDED_LEN + offs_m
m_i = tl.zeros([BLOCK_M], dtype=tl.float32) - float('inf')
l_i = tl.zeros([BLOCK_M], dtype=tl.float32)
acc = tl.zeros([BLOCK_M, BLOCK_DMODEL], dtype=tl.float32)
if NUM_DBLOCKS >= 2:
acc2 = tl.zeros([BLOCK_M, BLOCK_DMODEL], dtype=tl.float32)
# load q: it will stay in SRAM throughout
if EVEN_M_BLOCK:
q = tl.load(q_ptrs)
if NUM_DBLOCKS >= 2:
q2 = tl.load(q_ptrs + BLOCK_DMODEL * stride_qd)
else:
q = tl.load(q_ptrs, mask=offs_m[:, None] < Q_LEN)
if NUM_DBLOCKS >= 2:
q2 = tl.load(q_ptrs + BLOCK_DMODEL * stride_qd, mask=offs_m[:, None] < Q_LEN)
layout_ptr = layout_crow_ptr + off_h * layout_crow_stride_h + start_m * layout_crow_stride_m
start_l = tl.load(layout_ptr).to(tl.int32)
end_l = tl.load(layout_ptr + layout_crow_stride_m).to(tl.int32)
# loop over k, v and update accumulator
for col_idx_idx in range(start_l, end_l):
col_idx = tl.load(layout_col_ptr + off_h * layout_col_stride_h + col_idx_idx * layout_col_stride_m).to(tl.int32)
start_n = col_idx * BLOCK_N
# -- compute qk ----
if EVEN_N_BLOCK:
k = tl.load(k_ptrs + start_n * stride_kn)
else:
k = tl.load(k_ptrs + start_n * stride_kn, mask=offs_n[None, :] + start_n < N_CTX)
qk = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32)
qk += tl.dot(q, k)
if NUM_DBLOCKS >= 2:
if EVEN_N_BLOCK:
k = tl.load(k_ptrs + start_n * stride_kn + BLOCK_DMODEL * stride_kd)
else:
k = tl.load(k_ptrs + start_n * stride_kn + BLOCK_DMODEL * stride_kd, mask=offs_n[None, :] + start_n < N_CTX)
qk += tl.dot(q2, k)
qk *= sm_scale
qk += tl.where(offs_m[:, None] + PAST_LEN >= (start_n + offs_n[None, :]), 0, float('-inf'))
# -- compute m_ij, p, l_ij
m_ij = tl.max(qk, 1)
p = tl.exp(qk - m_ij[:, None])
l_ij = tl.sum(p, 1)
# -- update m_i and l_i
m_i_new = tl.maximum(m_i, m_ij)
alpha = tl.exp(m_i - m_i_new)
beta = tl.exp(m_ij - m_i_new)
l_i_new = alpha * l_i + beta * l_ij
# -- update output accumulator --
# scale p
p_scale = beta / l_i_new
p = p * p_scale[:, None]
# scale acc
acc_scale = l_i / l_i_new * alpha
# tl.store(t_ptrs, acc_scale)
# acc_scale = tl.load(t_ptrs) # BUG: have to store and immediately load
acc = acc * acc_scale[:, None]
if NUM_DBLOCKS >= 2:
acc2 = acc2 * acc_scale[:, None]
p = p.to(Q.dtype.element_ty)
# update acc
if EVEN_N_BLOCK:
v = tl.load(v_ptrs + start_n * stride_vn)
else:
v = tl.load(v_ptrs + start_n * stride_vn, mask=offs_n[:, None] + start_n < N_CTX)
acc += tl.dot(p, v)
if NUM_DBLOCKS >= 2:
if EVEN_N_BLOCK:
v = tl.load(v_ptrs + start_n * stride_vn + BLOCK_DMODEL * stride_vd)
else:
v = tl.load(v_ptrs + start_n * stride_vn + BLOCK_DMODEL * stride_vd, mask=offs_n[:, None] + start_n < N_CTX)
acc2 += tl.dot(p, v)
# update m_i and l_i
l_i = l_i_new
m_i = m_i_new
# rematerialize offsets to save registers
# start_m = tl.program_id(0)
# offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M)
# write back l and m
if not INFERENCE:
l_ptrs = L + off_hz * N_CTX + offs_m
m_ptrs = M + off_hz * N_CTX + offs_m
if EVEN_M_BLOCK:
tl.store(l_ptrs, l_i)
tl.store(m_ptrs, m_i)
else:
tl.store(l_ptrs, l_i, mask=offs_m < Q_LEN)
tl.store(m_ptrs, m_i, mask=offs_m < Q_LEN)
# initialize pointers to output
# offs_n = tl.arange(0, BLOCK_DMODEL)
off_o = off_z * stride_oz + off_h * stride_oh + offs_m[:, None] * stride_om + offs_d[None, :] * stride_od
out_ptrs = Out + off_o
tl.store(out_ptrs, acc, mask=offs_m[:, None] < Q_LEN)
if NUM_DBLOCKS >= 2:
tl.store(out_ptrs + BLOCK_DMODEL * stride_od, acc2, mask=offs_m[:, None] < Q_LEN)
## backward
@triton.heuristics(
{
'EVEN_M_BLOCK': lambda kwargs: kwargs['N_CTX'] % kwargs['BLOCK_M'] == 0,
}
)
@triton.jit
def _bwd_preprocess(
Out, DO, L, # assume contiguous for Out, DO, L, NewDO, Delta layout.
NewDO, Delta,
N_CTX,
BLOCK_M: tl.constexpr, D_HEAD: tl.constexpr,
EVEN_M_BLOCK: tl.constexpr,
):
off_m = tl.program_id(0) * BLOCK_M + tl.arange(0, BLOCK_M)
off_d = tl.arange(0, D_HEAD)
# load
if EVEN_M_BLOCK:
o = tl.load(Out + off_m[:, None] * D_HEAD + off_d[None, :]).to(tl.float32)
do = tl.load(DO + off_m[:, None] * D_HEAD + off_d[None, :]).to(tl.float32)
else:
o = tl.load(Out + off_m[:, None] * D_HEAD + off_d[None, :], mask=off_m[:, None] < N_CTX).to(tl.float32)
do = tl.load(DO + off_m[:, None] * D_HEAD + off_d[None, :], mask=off_m[:, None] < N_CTX).to(tl.float32)
denom = tl.load(L + off_m).to(tl.float32)
# compute
do = do / denom[:, None]
delta = tl.sum(o * do, axis=1)
# write-back
if EVEN_M_BLOCK:
tl.store(NewDO + off_m[:, None] * D_HEAD + off_d[None, :], do)
else:
tl.store(NewDO + off_m[:, None] * D_HEAD + off_d[None, :], do, mask=off_m[:, None] < N_CTX)
tl.store(Delta + off_m, delta)
# Does not suuport unequal seqlen(q) and seqlen(k)
@triton.heuristics(
{
'EVEN_M_BLOCK': lambda kwargs: kwargs['N_CTX'] % kwargs['BLOCK_M'] == 0,
'EVEN_N_BLOCK': lambda kwargs: kwargs['N_CTX'] % kwargs['BLOCK_N'] == 0,
}
)
@triton.jit
def _bwd_kernel(
Q, K, V, sm_scale,
layout_ccol_ptr,
layout_row_ptr,
layout_ccol_stride_h, layout_ccol_stride_m,
layout_row_stride_h, layout_row_stride_m,
Out, DO, # assume contigous: Out, Do, DQ, DK, DV, L, M, D, seq(q) == seq(k), with stride_oz, stride_oh, stride_om, stride_od,
DQ, DK, DV,
L, M,
D,
stride_qz, stride_qh, stride_qm, stride_qd,
stride_kz, stride_kh, stride_kn, stride_kd,
stride_vz, stride_vh, stride_vn, stride_vd,
stride_oz, stride_oh, stride_om, stride_od,
# stride_dz, stride_dh, stride_dm, stride_dd,
Z, H, N_CTX,
num_block,
BLOCK_M: tl.constexpr, BLOCK_DMODEL: tl.constexpr,
BLOCK_N: tl.constexpr,
EVEN_M_BLOCK: tl.constexpr,
EVEN_N_BLOCK: tl.constexpr,
NUM_DBLOCKS: tl.constexpr,
):
start_n = tl.program_id(0)
off_hz = tl.program_id(1)
off_z = off_hz // H
off_h = off_hz % H
# offset pointers for batch/head
Q += off_z * stride_qz + off_h * stride_qh
K += off_z * stride_kz + off_h * stride_kh
V += off_z * stride_vz + off_h * stride_vh
DO += off_z * stride_oz + off_h * stride_oh
DQ += off_z * stride_oz + off_h * stride_oh
DK += off_z * stride_oz + off_h * stride_oh
DV += off_z * stride_oz + off_h * stride_oh
# Look like this loop can be parallelled
# for start_n in range(0, num_block):
offs_n = start_n * BLOCK_N + tl.arange(0, BLOCK_N)
offs_m = tl.arange(0, BLOCK_M)
offs_d = tl.arange(0, BLOCK_DMODEL)
# initialize pointers to value-like data
k_ptrs = K + (offs_n[:, None] * stride_kn + offs_d[None, :] * stride_kd)
v_ptrs = V + (offs_n[:, None] * stride_vn + offs_d[None, :] * stride_vd)
# pointer to row-wise quantities in value-like data
D_ptrs = D + off_hz * N_CTX
m_ptrs = M + off_hz * N_CTX
# initialize dv amd dk
dv = tl.zeros([BLOCK_N, BLOCK_DMODEL], dtype=tl.float32)
dk = tl.zeros([BLOCK_N, BLOCK_DMODEL], dtype=tl.float32)
# k and v stay in SRAM throughout
if EVEN_N_BLOCK:
k = tl.load(k_ptrs)
v = tl.load(v_ptrs)
else:
k = tl.load(k_ptrs, mask=offs_n[:, None] < N_CTX)
v = tl.load(v_ptrs, mask=offs_n[:, None] < N_CTX)
if NUM_DBLOCKS >= 2:
dv2 = tl.zeros([BLOCK_N, BLOCK_DMODEL], dtype=tl.float32)
dk2 = tl.zeros([BLOCK_N, BLOCK_DMODEL], dtype=tl.float32)
if EVEN_N_BLOCK:
k2 = tl.load(k_ptrs + BLOCK_DMODEL * stride_kd)
v2 = tl.load(v_ptrs + BLOCK_DMODEL * stride_vd)
else:
k2 = tl.load(k_ptrs + BLOCK_DMODEL * stride_kd, mask=offs_n[:, None] < N_CTX)
v2 = tl.load(v_ptrs + BLOCK_DMODEL * stride_vd, mask=offs_n[:, None] < N_CTX)
# loop over rows
layout_ptr = layout_ccol_ptr + off_h * layout_ccol_stride_h + start_n * layout_ccol_stride_m
start_l = tl.load(layout_ptr).to(tl.int32)
end_l = tl.load(layout_ptr + layout_ccol_stride_m).to(tl.int32)
for row_idx_idx in range(start_l, end_l):
row_idx = tl.load(layout_row_ptr + off_h * layout_row_stride_h + row_idx_idx * layout_row_stride_m).to(tl.int32)
start_m = row_idx * BLOCK_M
# offs_qm = start_m + tl.arange(0, BLOCK_M)
offs_m_curr = start_m + offs_m
q_ptrs = Q + (offs_m_curr[:, None] * stride_qm + offs_d[None, :] * stride_qd)
do_ptrs = DO + (offs_m_curr[:, None] * stride_om + offs_d[None, :] * stride_od)
dq_ptrs = DQ + (offs_m_curr[:, None] * stride_om + offs_d[None, :] * stride_od)
# load q, k, v, do on-chip
if EVEN_M_BLOCK:
q = tl.load(q_ptrs)
else:
q = tl.load(q_ptrs, mask=offs_m_curr[:, None] < N_CTX)
# re-compute p = softmax(qk, dim=-1).T
# NOTE: `do` is pre-divided by `l`; no normalization here
qk = tl.dot(q, tl.trans(k))
if NUM_DBLOCKS >= 2:
if EVEN_M_BLOCK:
q2 = tl.load(q_ptrs + BLOCK_DMODEL * stride_qd)
else:
q2 = tl.load(q_ptrs + BLOCK_DMODEL * stride_qd, mask=offs_m_curr[:, None] < N_CTX)
qk += tl.dot(q2, tl.trans(k2))
qk += tl.where(offs_m_curr[:, None] >= (offs_n[None, :]), 0, float('-inf'))
if EVEN_M_BLOCK:
m = tl.load(m_ptrs + offs_m_curr)
else:
m = tl.load(m_ptrs + offs_m_curr, mask=offs_m_curr < N_CTX)
p = tl.exp(qk * sm_scale - m[:, None])
# compute dv
if EVEN_M_BLOCK:
do = tl.load(do_ptrs)
else:
do = tl.load(do_ptrs, mask=offs_m_curr[:, None] < N_CTX)
if NUM_DBLOCKS >= 2:
if EVEN_M_BLOCK:
do2 = tl.load(do_ptrs + BLOCK_DMODEL * stride_od)
else:
do2 = tl.load(do_ptrs + BLOCK_DMODEL * stride_od, mask=offs_m_curr[:, None] < N_CTX)
dv += tl.dot(tl.trans(p.to(Q.dtype.element_ty)), do)
if NUM_DBLOCKS >= 2:
dv2 += tl.dot(tl.trans(p.to(Q.dtype.element_ty)), do2)
# compute dp = dot(v, do)
if EVEN_M_BLOCK:
Di = tl.load(D_ptrs + offs_m_curr)
else:
Di = tl.load(D_ptrs + offs_m_curr, mask=offs_m_curr < N_CTX)
dp = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32) - Di[:, None]
dp += tl.dot(do, tl.trans(v))
if NUM_DBLOCKS >= 2:
dp += tl.dot(do2, tl.trans(v2))
# compute ds = p * (dp - delta[:, None])
ds = p * dp * sm_scale
# compute dk = dot(ds.T, q)
dk += tl.dot(tl.trans(ds.to(Q.dtype.element_ty)), q)
if NUM_DBLOCKS >= 2:
dk2 += tl.dot(tl.trans(ds.to(Q.dtype.element_ty)), q2)
# # compute dq
dq = tl.dot(ds.to(Q.dtype.element_ty), k)
if EVEN_M_BLOCK:
tl.atomic_add(dq_ptrs, dq)
else:
tl.atomic_add(dq_ptrs, dq, mask=offs_m_curr[:, None] < N_CTX)
if NUM_DBLOCKS >= 2:
dq2 = tl.dot(ds.to(Q.dtype.element_ty), k2)
dq_ptrs2 = dq_ptrs + BLOCK_DMODEL * stride_od
if EVEN_M_BLOCK:
tl.atomic_add(dq_ptrs2, dq2)
else:
tl.atomic_add(dq_ptrs2, dq2, mask=offs_m_curr[:, None] < N_CTX)
# write-back
dv_ptrs = DV + (offs_n[:, None] * stride_om + offs_d[None, :] * stride_od)
dk_ptrs = DK + (offs_n[:, None] * stride_om + offs_d[None, :] * stride_od)
if EVEN_N_BLOCK:
tl.store(dv_ptrs, dv)
tl.store(dk_ptrs, dk)
else:
tl.store(dv_ptrs, dv, mask=offs_n[:, None] < N_CTX)
tl.store(dk_ptrs, dk, mask=offs_n[:, None] < N_CTX)
if NUM_DBLOCKS >= 2:
dv_ptrs2 = dv_ptrs + BLOCK_DMODEL * stride_od
dk_ptrs2 = dk_ptrs + BLOCK_DMODEL * stride_od
if EVEN_N_BLOCK:
tl.store(dv_ptrs2, dv2)
tl.store(dk_ptrs2, dk2)
else:
tl.store(dv_ptrs2, dv2, mask=offs_n[:, None] < N_CTX)
tl.store(dk_ptrs2, dk2, mask=offs_n[:, None] < N_CTX)
def _forward(ctx, q, k, v, layout_crow_indices, layout_col_indices, sm_scale, BLOCK_M, BLOCK_N, num_warps=None, num_stages=1, inference=None, out=None):
'''
:param q, k, v: [batch, n_heads, seq_len, model_dim]. len of q is allowed to be different than k/v.
:param layout_crow_indices, layout_col_indices: same as CSR.crow_indices, and CSR.col_indices used to preresent a sparse tensor.
Each element represent a block, i.e, all elements in a block to be attentdd, or not attended at all..
'''
assert q.shape[-1] == k.shape[-1] == v.shape[-1]
assert k.shape[2] == v.shape[2]
o = out if out is not None else torch.empty_like(q).contiguous()
grid = (triton.cdiv(q.shape[2], BLOCK_M), q.shape[0] * q.shape[1])
q_rounded_len = grid[0] * BLOCK_M
tmp = torch.empty((q.shape[0] * q.shape[1], q_rounded_len), device=q.device, dtype=torch.float32)
if inference is None:
inference = (not q.requires_grad) and (not k.requires_grad) and (not v.requires_grad)
if inference:
L, m = tmp, tmp # no need to use create new tensor
else:
L = torch.empty((q.shape[0] * q.shape[1], q_rounded_len), device=q.device, dtype=torch.float32)
m = torch.empty((q.shape[0] * q.shape[1], q_rounded_len), device=q.device, dtype=torch.float32)
if layout_col_indices.dim() == 1:
layout_crow_indices = layout_crow_indices[None].expand(q.shape[1] , -1)
layout_col_indices = layout_col_indices[None].expand(q.shape[1] , -1)
assert q.shape[-1] in [64, 128]
BLOCK_DMODEL = 64
if num_warps is None:
MIN_D = min(BLOCK_M, BLOCK_N, BLOCK_DMODEL)
num_warps = max(1, 2 ** int(math.log2(MIN_D / 16)))
# print(f'> {BLOCK_M=}, {BLOCK_N=}, {BLOCK_DMODEL=}, {num_warps=}, {num_stages=}')
else:
assert math.log2(num_warps) % 1 == 0, f'''"num_warps" should be power of 2, but got {num_warps}.'''
## For debugging:
# print(f'>> {q.shape=}, {k.shape=}, {BLOCK_M=}, {BLOCK_N=}, {num_warps=}, {BLOCK_DMODEL=}, {q.stride()=}, {k.stride()=}')
# print(f'>> {layout_crow_indices=}\n{layout_col_indices=}\n {layout_crow_indices.stride()=}, {layout_crow_indices.stride()=}')
# print(f'> {q.shape=}, {k.shape=}, {layout_crow_indices.shape}, {layout_col_indices.shape}, {layout_crow_indices.stride()}, \
# {layout_col_indices.stride()}, {layout_crow_indices=}, {layout_col_indices=}')
_fwd_kernel[grid](
q, k, v, sm_scale,
layout_crow_indices,
layout_col_indices,
layout_crow_indices.stride(0), layout_crow_indices.stride(1),
layout_col_indices.stride(0), layout_col_indices.stride(1),
tmp, L, m,
o,
q.stride(0), q.stride(1), q.stride(2), q.stride(3),
k.stride(0), k.stride(1), k.stride(2), k.stride(3),
v.stride(0), v.stride(1), v.stride(2), v.stride(3),
o.stride(0), o.stride(1), o.stride(2), o.stride(3),
q.shape[0], q.shape[1], k.shape[2],
k.shape[2] - q.shape[2],
q_rounded_len,
BLOCK_M=BLOCK_M, BLOCK_N=BLOCK_N,
BLOCK_DMODEL=BLOCK_DMODEL,
EVEN_M_BLOCK=q.shape[2] % BLOCK_M == 0,
EVEN_N_BLOCK=k.shape[2] % BLOCK_N == 0 ,
INFERENCE=inference,
NUM_DBLOCKS=q.shape[-1] // BLOCK_DMODEL,
num_warps=num_warps,
num_stages=num_stages,
)
if inference:
L, m = None, None
ctx.save_for_backward(q, k, v, o, L, m, layout_crow_indices, layout_col_indices)
ctx.BLOCK_M = BLOCK_M
ctx.BLOCK_N = BLOCK_N
ctx.BLOCK_DMODEL = BLOCK_DMODEL
# ctx.BLOCK = BLOCK
ctx.grid = grid
ctx.sm_scale = sm_scale
ctx.num_warps = num_warps
ctx.num_stages = num_stages
return o
def _backward(ctx, do, layout_ccol_indices, layout_row_indices, dq=None, dk=None, dv=None):
# q, k, v, o, l, m = ctx.saved_tensors
q, k, v, o, l, m, layout_crow_indices, layout_col_indices = ctx.saved_tensors
## this following too slow to do online, so get it from inputs, which is cached.
# layout_ccol_indices, layout_row_indices = dense_to_ccol_row(crow_col_to_dense(ctx.layout_crow_indices, ctx.layout_col_indices))
# layout_ccol_indices, layout_row_indices = dense_to_ccol_row(crow_col_to_dense(layout_crow_indices, layout_col_indices))
if not do.is_contiguous():
do = do.contiguous()
## for debugging
# print(f'----> do is not contiguous: {do.stride()=}')
# raise ValueError(f'>>>> output grad is not contiguous: {do.stride()=}')
if not o.is_contiguous():
# TODO: currently only work with contiguous q/k/v.
raise ValueError(f'--> output is not contiguous: {o.stride()=}. This is maybe caused by q/k/v not being contiguous.')
if layout_ccol_indices.dim() == 1:
layout_ccol_indices = layout_ccol_indices[None].expand(q.shape[1], -1)
layout_row_indices = layout_row_indices[None].expand(q.shape[1], -1)
# do = do.contiguous()
dq = dq if dq is not None else torch.zeros_like(q, dtype=torch.float32)
dk = dk if dk is not None else torch.empty_like(k)
dv =dv if dv is not None else torch.empty_like(v)
do_scaled = torch.empty_like(do)
delta = torch.empty_like(l)
assert o.stride() == dq.stride() == dk.stride() == dv.stride() == do_scaled.stride()
_bwd_preprocess[(ctx.grid[0] * ctx.grid[1], )](
o, do, l,
do_scaled, delta,
k.shape[2],
BLOCK_M=ctx.BLOCK_M, D_HEAD=q.shape[-1],
)
grid = (triton.cdiv(q.shape[2], ctx.BLOCK_N), ctx.grid[1])
_bwd_kernel[grid](
q, k, v, ctx.sm_scale,
layout_ccol_indices,
layout_row_indices,
layout_ccol_indices.stride(0), layout_ccol_indices.stride(1),
layout_row_indices.stride(0), layout_row_indices.stride(1),
o, do_scaled,
dq, dk, dv,
l, m,
delta,
q.stride(0), q.stride(1), q.stride(2), q.stride(3),
k.stride(0), k.stride(1), k.stride(2), k.stride(3),
v.stride(0), v.stride(1), v.stride(2), v.stride(3),
o.stride(0), o.stride(1), o.stride(2), o.stride(3),
q.shape[0], q.shape[1], q.shape[2],
ctx.grid[0],
BLOCK_M=ctx.BLOCK_M,
BLOCK_N=ctx.BLOCK_N,
BLOCK_DMODEL=ctx.BLOCK_DMODEL,
NUM_DBLOCKS=q.shape[-1] // ctx.BLOCK_DMODEL,
num_warps=ctx.num_warps,
num_stages=1,
)
return dq, dk, dv, None, None, None
class _sparse_attention(torch.autograd.Function):
@staticmethod
def forward(ctx, q, k, v, layout_crow_indices, layout_col_indices, sm_scale):
BLOCK = 128
# shape constraints
return _forward(ctx, q, k, v, layout_crow_indices, layout_col_indices, sm_scale, BLOCK, BLOCK)
@staticmethod
def backward(ctx, do):
# q, k, v, o, l, m = ctx.saved_tensors
q, k, v, o, l, m, layout_crow_indices, layout_col_indices = ctx.saved_tensors
# TODO: the following is very inefficient.
# layout_ccol_indices, layout_row_indices = dense_to_ccol_row(crow_col_to_dense(ctx.layout_crow_indices, ctx.layout_col_indices))
layout_ccol_indices, layout_row_indices = dense_to_ccol_row(crow_col_to_dense(layout_crow_indices, layout_col_indices))
return _backward(ctx, do, layout_ccol_indices, layout_row_indices)
# suppressed
class _sparse_attention_inference(_sparse_attention):
# TODO: does not work now, as BLOCK_M cannot be <1, as shape for tl.dot cannot be smaller than 16.
@staticmethod
def forward(ctx, q, k, v, layout_crow_indices, layout_col_indices, sm_scale):
BLOCK = 128
return _forward(ctx, q, k, v, layout_crow_indices, layout_col_indices, sm_scale, 1, BLOCK)
def sparse_attention_factory(BLOCK_M=128, BLOCK_N=128, **kwargs):
class _sparse_attention_config(_sparse_attention):
@staticmethod
def forward(ctx, q, k, v, layout_crow_indices, layout_col_indices, sm_scale):
# shape constraints
return _forward(ctx, q, k, v, layout_crow_indices, layout_col_indices, sm_scale, BLOCK_M, BLOCK_N,
**kwargs
)
return _sparse_attention_config.apply
@lru_cache(maxsize=8)
def get_local_strided_sparse_attention_op(
n_heads: int,
max_seq_len:int,
sparse_block_size: int=128,
local_blocks: int=4,
vert_stride: int=4,
homo_head: bool=False,
dtype=torch.bfloat16,
device='cuda',
active_head_range=None,
verbose=True,
**kwargs):
'''
:param n_heads: total number of attention heads (regardless of tensor/model parallel)
:param max_seq_len: max sequence length. Need to be bigger or equal to the length of sequences.
:param sparse_block_size: sparse block size. Default to 128
:param local_blocks: number of nearest block to attend to. Default to 4, i.e., attention to previous 4xblock_size tokens.
:param vert_stride: Default to 4. Meaning
:param homo_head: if all head shared the same pattern.
:param active_head_range: tuple of start & end of the heads, e..g, (8, 16). Default to use all heads.
Mainly for tensor/model parallelization where heads are splitted to different GPUs.
'''
if verbose:
print((f'> new block_sparse_attn op constructed with config: '
f'{n_heads=}, {max_seq_len=}, {sparse_block_size=}, {local_blocks=}, '
f'{vert_stride=}, {homo_head=}, {active_head_range=}, {kwargs=}'))
# assert math.log2(max_seq_len) % 2 == 0, f"max_seq_len should be power of 2 to be more efficient"
_, block_sparse_pattern, _ = _get_sparse_attn_mask(n_heads, max_seq_len, max_seq_len, dtype, device,
BLOCK=sparse_block_size, local_blocks=local_blocks,
vert_stride=vert_stride, homo_head=homo_head,
return_dense=False)
if (not homo_head) and (active_head_range is not None):
assert isinstance(active_head_range, tuple)
assert len(active_head_range) == 2, '"active_head_range" should be a tuple of start/end index of the heads.'
h_start, h_end = active_head_range
block_sparse_pattern = block_sparse_pattern[h_start:h_end]
# print(block_sparse_pattern)
return get_sparse_attn_op(block_sparse_pattern, sparse_block_size, **kwargs)
def get_sparse_attn_op(
sparse_pattern: torch.tensor,
sparse_block_size: int=128,
kernel_block_size=128,
qkv_format='q,k,v',
**kwargs):
'''
Ccreate a block-sparse op with fixed layout. This is to avoid the need to of create CSR layout and convert it to CSC layout everytime,
which is very inefficient (use python loops on CPU. PyTorch 1.13 supports CSR->CSC, may help.)
:param sparse_pattern: sparse pattern of the blocks. Should be `num_blocks(q) x num_blocks(k)` or `n_heads x num_blocks x num_blocks`.
This tensor should have lower-triangular matrices on the last 2 dimensions for causal attention
:param sparse_block_size: sparse block size. Default to 128
:param kernel_block_size: the tile/block size to launch a triton instance. Default to None, i.e., same as `sparse_block_size`
:param qkv_format: Choices=['q,k,v', 'q, kv', 'qkv'], i.e., separated q,k,v, or kv packed, or qkv packed. Currently, only 'q,k,v' is supported.
:param kwargs: keyward arguments passed to `_forward`
'''
# assert qkv_format in ('q,k,v', 'q, kv', 'qkv') # to save from running `concat` at forward/backward
assert qkv_format == 'q,k,v'
if kernel_block_size is None:
kernel_block_size = sparse_block_size
else:
assert sparse_block_size % kernel_block_size == 0, f"The sparse block size must be a multiple of {kernel_block_size}."
assert kernel_block_size >=16 and math.log2(kernel_block_size) % 1 == 0, f"block_size must be power of 2 and at least 16, but {kernel_block_size} is given"
# print(f'>> {sparse_pattern.shape=}')
# print(f'{sparse_pattern=}')
if sparse_block_size // kernel_block_size > 1:
_mul = sparse_block_size // kernel_block_size
# need to consider if block_m and block_n are different
sparse_pattern = torch.kron(sparse_pattern, sparse_pattern.new_ones(_mul, _mul))
num_sparse_blocks = sparse_pattern.size(-1)
block_causal_mask = torch.arange(0, num_sparse_blocks)[:, None] >= torch.arange(0, num_sparse_blocks)[None]
sparse_pattern *= block_causal_mask.type_as(sparse_pattern)
# print(f'>> after: {sparse_pattern.shape=}')
# print(f'{sparse_pattern=}')
BLOCK_N = kernel_block_size
NUM_BLOCK = sparse_pattern.size(-1)
MAX_SEQ_LEN = kernel_block_size * NUM_BLOCK
grand_layout_crow_indices, grand_layout_col_indices = dense_to_crow_col(sparse_pattern)
# sparse csc layout for backward
grand_layout_ccol_indices, grand_layout_row_indices = dense_to_ccol_row(sparse_pattern)
# cache GPU backward layout. limit the size to avoid OOM as time goes.
# For inference, one only needs to cache one block as sequence length always increases
# Therefore, this cache needs to be reconstructed per every `block_size`-steps.
# For training/finetune, set to 8 to increase cache hit.
# Given an input, the block_len will be the same for all layers, so cache is very helpful.
max_cache_size = 1 if kwargs.get('inference', False) else 8
@lru_cache(maxsize=max_cache_size)
def get_backward_layout_by_block_len(block_len):
assert block_len <= NUM_BLOCK
if block_len == NUM_BLOCK:
return (grand_layout_ccol_indices, grand_layout_row_indices)
return dense_to_ccol_row(sparse_pattern[..., :block_len, :block_len])
# for debugging
# if not torch.distributed.is_initialized() or torch.distributed.get_rank() == 0:
# print(f'> {sparse_pattern.cpu().tolist()=}')
# print('----')
# print(f'> {grand_layout_crow_indices.cpu().tolist()=}\n{grand_layout_col_indices.cpu().tolist()=}')
# q, k, v separated
class _q_k_v_sparse_attention(torch.autograd.Function):
@staticmethod
def forward(ctx, q, k, v, sm_scale):
# assert q.shape[2] == 1 or q.shape[2] == k.shape[2]
# shape constraints
MIN_BLOCK_SIZE = 16
assert BLOCK_N >= MIN_BLOCK_SIZE
BLOCK_M = 16 if q.shape[2] <= 16 else BLOCK_N # BLOCK_M has to be power of 2
# this following code only works for causal attention
K_BLOCKS = triton.cdiv(k.shape[2], kernel_block_size)
# Q_START_BLOCKS = K_BLOCKS - 1 if q.shape[2] == 1 else 0
Q_START_BLOCKS = K_BLOCKS - triton.cdiv(q.shape[2], BLOCK_N)
# print(Q_START_BLOCKS, K_BLOCKS)
layout_crow_indices = grand_layout_crow_indices[..., Q_START_BLOCKS:K_BLOCKS+1]
layout_col_indices = grand_layout_col_indices
# print(BLOCK_M, BLOCK_N, Q_START_BLOCKS, K_BLOCKS+1, layout_crow_indices, layout_col_indices)
return _forward(ctx, q, k, v, layout_crow_indices, layout_col_indices, sm_scale, BLOCK_M, BLOCK_N,
**kwargs
)
@staticmethod
def backward(ctx, do):
q, k = ctx.saved_tensors[:2]
assert q.shape[2] == k.shape[2], '> currently backward can only be done if q, k have same length. Contact @EricLin if you need it.'
# assume q, k have same length
block_len = triton.cdiv(do.shape[2], kernel_block_size)
backward_layout = get_backward_layout_by_block_len(block_len)
return _backward(ctx, do, *backward_layout)[:4]
def _q_k_v_sparse_attention_fn(*args):
return _q_k_v_sparse_attention.apply(*args)
_q_k_v_sparse_attention_fn.sparse_pattern = sparse_pattern
_q_k_v_sparse_attention_fn.grand_layout_crow_indices = grand_layout_crow_indices
_q_k_v_sparse_attention_fn.grand_layout_col_indices = grand_layout_col_indices
_q_k_v_sparse_attention_fn.grand_layout_ccol_indices = grand_layout_ccol_indices
_q_k_v_sparse_attention_fn.grand_layout_row_indices = grand_layout_row_indices
return _q_k_v_sparse_attention_fn
###########################################################
###########################################################
###########################################################
################ Inference Kernels ########################
###########################################################
def blocksparse_flash_attn_padded_fwd(
q, k, v, # (batch, tokens, n_heads, head_size)
sm_scale,
sparse_layout,
*,
left_paddings = None,
seqlens = None,
block_size = 64,
max_seqlen = None
):
'''
q, k, v: (batch, tokens, n_heads/n_kv_heads, head_size)
left_paddings: (batch, ), number of left paddings for each sample.
seqlens: can be used to specify right padding. No need to specify if left_paddings is used.
'''
batches, q_len, n_heads, head_size = q.shape
_, k_len, n_kv_heads, _ = k.shape
assert q.dim() == k.dim() == v.dim() == 4
assert q.size(2) % k.size(2) == 0
assert q.size(0) == k.size(0) and q.size(3) == k.size(3)
assert k.shape == v.shape # TODO: allow diff head_size for k, v
assert q_len == 1 or q_len == k_len, \
f'q length can only 1 for decoding for same as k length for prefilling.'
q_k_ratio = q.size(2) // k.size(2)
if max_seqlen:
assert k.size(1) <= max_seqlen, f'k has seqlen {k.size(1)} while max sequence length is set to {max_seqlen}.'
# paddings always has zero output, a little slower than using empty
out = q.new_zeros(q.shape)
layout_crow_indices, layout_col_indices = sparse_layout
block_d = triton.next_power_of_2(head_size)
if left_paddings is not None:
assert left_paddings.shape == (batches,)
k_batch_starts = left_paddings.to(q.device, dtype=torch.int32).contiguous()
else:
k_batch_starts = torch.zeros((batches,), dtype=torch.int32, device=q.device)
if seqlens is not None:
k_batch_ends = k_batch_starts + seqlens.type_as(k_batch_starts)
assert k_batch_ends.max() <= k_len, f'seqlens (+left_paddings if any) exceeds seqlen.'
else:
k_batch_ends = torch.zeros_like(k_batch_starts) + k_len
if q_len == 1:
q_batch_starts = torch.zeros_like(k_batch_starts)
q_batch_ends = q_batch_starts + 1
else:
q_batch_starts = k_batch_starts
q_batch_ends = k_batch_ends
# switch to use cpu to avoid too many kernel lauch when iterate over
q_lens = (q_batch_ends - q_batch_starts).cpu()
n_blocks = (q_lens + block_size - 1) // block_size
q_batch_ids = torch.tensor([i for i, n in enumerate(n_blocks) for _ in range(n)],
dtype=q_batch_starts.dtype,
device=q_batch_starts.device)
q_start_sids = torch.tensor([i * block_size for n in n_blocks for i in range(n)],
dtype=q_batch_starts.dtype,
device=q_batch_starts.device)
grid = (len(q_start_sids), n_heads)
_fwd_kernel_batch_inference[grid](
q, k, v, out,
sm_scale,
q_batch_starts,
q_batch_ends,
k_batch_starts,
k_batch_ends,
q_batch_ids,
q_start_sids,
*q.stride(),
*k.stride(),
*v.stride(),
*out.stride(),
layout_crow_indices,
layout_col_indices,
*layout_crow_indices.stride(),
*layout_col_indices.stride(),
q_k_ratio,
HAS_BATCH_DIM = True,
D_HEAD = head_size,
BLOCK_M = block_size,
BLOCK_N = block_size,
BLOCK_D = block_d,
BLOCK_M_LOADING = 16 if q_len == 1 else block_size, # smaller for decoding
EVEN_D = block_d == head_size,
num_warps = 1 if q_len == 1 else 4,
num_stages = 3
)
return out
def blocksparse_flash_attn_varlen_fwd(
q, k, v, # (#tokens, n_heads, head_size)
cu_seqlens_k,
cu_seqlens_q,
sm_scale,
sparse_layout,
*,
block_size=64,
max_seqlen = None
):
# split q to blocks
_, n_heads, head_size = q.shape
batch_size = cu_seqlens_k.size(0) - 1
# print(f'> {q.shape=}, {k.shape=}')
assert q.dim() == k.dim() == v.dim() == 3
assert q.size(1) % k.size(1) == 0
assert q.size(2) == k.size(2)
assert k.shape == v.shape # TODO: allow diff head_size for k, v
assert cu_seqlens_k.dim() == 1
q_k_ratio = q.size(1) // k.size(1)
if cu_seqlens_q is None:
if q.size(0) == batch_size: # decoding only
cu_seqlens_q = torch.arange(0, batch_size + 1,
dtype=cu_seqlens_k.dtype,
device=cu_seqlens_k.device)
elif q.size(0) == k.size(0):
cu_seqlens_q = cu_seqlens_k
else:
raise ValueError('cu_seqlens_q must be specified if it is mix of prefilling and decoding.')
else:
assert cu_seqlens_k.size(0) == cu_seqlens_q.size(0)
# switch to use cpu to avoid too many kernel lauch when iterate over
q_lens = (cu_seqlens_q[1:] - cu_seqlens_q[:-1]).cpu()
k_lens = (cu_seqlens_k[1:] - cu_seqlens_k[:-1]).cpu()
assert torch.logical_or(q_lens == 1, k_lens == q_lens).all(), \
'length of q should either be 1 (decoding) or same as k (prefilling).'
if max_seqlen:
assert k_lens.max() <= max_seqlen
n_blocks = (q_lens + block_size - 1) // block_size
q_batch_ids = torch.tensor([i for i, n in enumerate(n_blocks) for _ in range(n)],
dtype=cu_seqlens_q.dtype,
device=cu_seqlens_q.device)
q_start_sids = torch.tensor([i * block_size for n in n_blocks for i in range(n)],
dtype=cu_seqlens_q.dtype,
device=cu_seqlens_q.device)
out = q.new_empty(q.shape)
cu_seqlens_q = cu_seqlens_q.contiguous()
cu_seqlens_k = cu_seqlens_k.contiguous()
layout_crow_indices, layout_col_indices = sparse_layout
block_d = triton.next_power_of_2(head_size)
decoding_only = (q_lens == 1).all()
grid = (len(q_start_sids), n_heads)
_fwd_kernel_batch_inference[grid](
q, k, v, out,
sm_scale,
cu_seqlens_q[:-1],
cu_seqlens_q[1:],
cu_seqlens_k[:-1],
cu_seqlens_k[1:],
q_batch_ids,
q_start_sids,
0, *q.stride(),
0, *k.stride(),
0, *v.stride(),
0, *out.stride(),
layout_crow_indices,
layout_col_indices,
*layout_crow_indices.stride(),
*layout_col_indices.stride(),
q_k_ratio,
HAS_BATCH_DIM = False,
D_HEAD = head_size,
BLOCK_M = block_size,
BLOCK_N = block_size,
BLOCK_D = block_d,
BLOCK_M_LOADING = 16 if decoding_only else block_size, # smaller for decoding
EVEN_D = block_d == head_size,
num_warps = 1 if decoding_only else 4,
num_stages = 3
)
return out
@triton.jit
def _fwd_kernel_inner(
acc, l_i, m_i,
q, Q,
k_block_col_idx,
layout_col_ptr,
layout_col_stride_h, layout_col_stride_m,
k_ptrs,
v_ptrs,
off_h, offs_m, offs_n, offs_d,
stride_kt, stride_vt,
sm_scale,
k_seqlen,
past_len,
LAST_K_BLOCK: tl.constexpr,
BLOCK_M_LOADING: tl.constexpr,
BLOCK_N: tl.constexpr,
D_HEAD: tl.constexpr,
EVEN_D: tl.constexpr,
M_LT_N: tl.constexpr
):
k_block_id = tl.load(layout_col_ptr + off_h * layout_col_stride_h + k_block_col_idx * layout_col_stride_m).to(tl.int32)
start_n = k_block_id * BLOCK_N
# -- compute qk ----
if LAST_K_BLOCK:
if EVEN_D:
k = tl.load(k_ptrs + start_n * stride_kt,
mask=offs_n[None, :] + start_n < k_seqlen)
else:
# mask = mask & (offs_d[:, ])
k = tl.load(k_ptrs + start_n * stride_kt,
mask=(offs_n[None, :] + start_n < k_seqlen) & (offs_d[:, None] < D_HEAD))
else:
if EVEN_D:
k = tl.load(k_ptrs + start_n * stride_kt)
else:
k = tl.load(k_ptrs + start_n * stride_kt,
mask=offs_d[:, None] < D_HEAD)
qk = tl.zeros([BLOCK_M_LOADING, BLOCK_N], dtype=tl.float32)
qk += tl.dot(q, k)
qk *= sm_scale
# the following is needed only when LAST_K_BLOCK or BLOCK_M < BLOCK_N
if LAST_K_BLOCK | M_LT_N:
qk += tl.where(offs_m[:, None] + past_len >= (start_n + offs_n[None, :]), 0, float('-inf'))
# -- compute m_ij, p, l_ij
m_ij = tl.max(qk, 1)
p = tl.exp(qk - m_ij[:, None])
l_ij = tl.sum(p, 1)
# -- update m_i and l_i
m_i_new = tl.maximum(m_i, m_ij)
alpha = tl.exp(m_i - m_i_new)
beta = tl.exp(m_ij - m_i_new)
l_i_new = alpha * l_i + beta * l_ij
# -- update output accumulator --
# scale p
p_scale = beta / l_i_new
p = p * p_scale[:, None]
# scale acc
acc_scale = l_i / l_i_new * alpha
acc = acc * acc_scale[:, None]
p = p.to(Q.dtype.element_ty)
# update acc
if LAST_K_BLOCK:
if EVEN_D:
v = tl.load(v_ptrs + start_n * stride_vt,
mask=offs_n[:, None] + start_n < k_seqlen)
else:
v = tl.load(v_ptrs + start_n * stride_vt,
mask=(offs_n[:, None] + start_n < k_seqlen) & (offs_d[None, :] < D_HEAD))
else:
if EVEN_D:
v = tl.load(v_ptrs + start_n * stride_vt)
else:
v = tl.load(v_ptrs + start_n * stride_vt,
mask=offs_d[None, :] < D_HEAD)
acc += tl.dot(p, v)
# update m_i and l_i
l_i = l_i_new
m_i = m_i_new
return acc, l_i, m_i
@triton.heuristics(
{
'M_LT_N': lambda kwargs: kwargs['BLOCK_M'] < kwargs['BLOCK_N'],
}
)
@triton.jit
def _fwd_kernel_batch_inference(
Q, K, V, Out,
sm_scale,
q_batch_starts,
q_batch_ends,
k_batch_starts,
k_batch_ends,
q_batch_ids,
q_start_sids,
stride_qb, stride_qt, stride_qh, stride_qd,
stride_kb, stride_kt, stride_kh, stride_kd,
stride_vb, stride_vt, stride_vh, stride_vd,
stride_ob, stride_ot, stride_oh, stride_od,
layout_crow_ptr,
layout_col_ptr,
layout_crow_stride_h, layout_crow_stride_m,
layout_col_stride_h, layout_col_stride_m,
q_k_ratio,
HAS_BATCH_DIM: tl.constexpr,
D_HEAD: tl.constexpr,
BLOCK_M: tl.constexpr,
BLOCK_N: tl.constexpr,
BLOCK_D: tl.constexpr,
BLOCK_M_LOADING: tl.constexpr,
EVEN_D: tl.constexpr,
M_LT_N: tl.constexpr
):
'''
NOTATION:
pid: position id
sid: storage id
sbid: storage block id
pbid: position block id
offs_m, offs_n: storage offsets of m-dim(q, row) and n-dim(k, col)
q and blocks in KV needs to be contiguous
Arguments:
kv_seq_lens: for compute past_len
kv_storage_offsets: similar to block_tables in vllm, except it is dynamic.
TODO: fix this
TODO:
Optimize grouped-attn
CUDA graph support issue
1. grid is dynamic: vllm set up multiple cuda graph in decoding phase, with diff max token size (16, 32, ...)
since we mix prompt and decoing phase here, it can be more complex.
need to set up diff cuda-graph for diff (off_zm, off_z)
# indeed, q_batch_ids can be padded to maximum number of grid[0], i.e., assume all decoding
therefore, cu_seqlens_q, kv_seq_lens
'''
off_zm = tl.program_id(0)
off_h = tl.program_id(1)
off_h_for_kv = off_h // q_k_ratio
off_z = tl.load(q_batch_ids + off_zm).to(tl.int32) # [0, 0, 0, 1]
q_start_sid = tl.load(q_start_sids + off_zm)
start_m = q_start_sid // BLOCK_M
if HAS_BATCH_DIM:
Q += off_z * stride_qb
K += off_z * stride_kb
V += off_z * stride_vb
Out += off_z * stride_ob
offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M_LOADING)
offs_n = tl.arange(0, BLOCK_N)
offs_d = tl.arange(0, BLOCK_D)
q_cu_start = tl.load(q_batch_starts + off_z).to(tl.int32)
q_seqlen = tl.load(q_batch_ends + off_z).to(tl.int32) - q_cu_start
k_cu_start = tl.load(k_batch_starts + off_z).to(tl.int32)
k_seqlen = tl.load(k_batch_ends + off_z).to(tl.int32) - k_cu_start
past_len = k_seqlen - q_seqlen
Q += q_cu_start * stride_qt + off_h * stride_qh
K += k_cu_start * stride_kt + off_h_for_kv * stride_kh
V += k_cu_start * stride_vt + off_h_for_kv * stride_vh
Out += q_cu_start * stride_ot + off_h * stride_oh
q_pbid = (past_len + q_start_sid) // BLOCK_M
if EVEN_D:
q = tl.load(Q + offs_m[:, None] * stride_qt + offs_d[None, :] * stride_qd,
mask=offs_m[:, None] < q_seqlen)
else:
q = tl.load(Q + offs_m[:, None] * stride_qt + offs_d[None, :] * stride_qd,
mask=(offs_m[:, None] < q_seqlen) & (offs_d[None, :] < D_HEAD),
other=0)
sparse_crow_ptr = layout_crow_ptr + off_h * layout_crow_stride_h + q_pbid * layout_crow_stride_m
# TODO: load at once, supported in new Triton
k_block_start = tl.load(sparse_crow_ptr).to(tl.int32)
k_block_end = tl.load(sparse_crow_ptr + 1).to(tl.int32)
m_i = tl.zeros([BLOCK_M_LOADING], dtype=tl.float32) - float('inf')
l_i = tl.zeros([BLOCK_M_LOADING], dtype=tl.float32)
acc = tl.zeros([BLOCK_M_LOADING, BLOCK_D], dtype=tl.float32)
k_ptrs = K + offs_n[None, :] * stride_kt + offs_d[:, None] * stride_kd
v_ptrs = V + offs_n[:, None] * stride_vt + offs_d[None, :] * stride_vd
for k_block_col_idx in range(k_block_start, k_block_end - 1):
acc, l_i, m_i = _fwd_kernel_inner(
acc, l_i, m_i,
q, Q,
k_block_col_idx,
layout_col_ptr,
layout_col_stride_h, layout_col_stride_m,
k_ptrs,
v_ptrs,
off_h, offs_m, offs_n, offs_d,
stride_kt, stride_vt,
sm_scale,
k_seqlen,
past_len,
False,
BLOCK_M_LOADING,
BLOCK_N,
D_HEAD,
EVEN_D,
M_LT_N
)
acc, l_i, m_i = _fwd_kernel_inner(
acc, l_i, m_i,
q, Q,
k_block_end - 1,
layout_col_ptr,
layout_col_stride_h, layout_col_stride_m,
k_ptrs,
v_ptrs,
off_h, offs_m, offs_n, offs_d,
stride_kt, stride_vt,
sm_scale,
k_seqlen,
past_len,
True,
BLOCK_M_LOADING,
BLOCK_N,
D_HEAD,
EVEN_D,
M_LT_N
)
# write output
if EVEN_D:
tl.store(Out + offs_m[:, None] * stride_ot + offs_d[None, :] * stride_od, acc,
mask=offs_m[:, None] < q_seqlen)
else:
tl.store(Out + offs_m[:, None] * stride_ot + offs_d[None, :] * stride_od, acc,
mask=(offs_m[:, None] < q_seqlen) & (offs_d[None, :] < D_HEAD))
###########################################################
###########################################################
###########################################################
################## Testing Utilities ######################
###########################################################
def torch_attention(q, k, v, attn_mask=None, sm_scale=None, block_attn_mask=None, block_size=128, do=None):
'''
q, k, v: shape=(batch, n_heads, seq, dim)
'''
# for verification
if sm_scale is None:
sm_scale = math.sqrt(float(q.size(-1)))
if block_attn_mask is not None:
assert attn_mask is None
outs = []
for s in range(0, q.size(2), block_size):
e = min(s + block_size, q.size(2))
q_block = q[:, :, s:e]
attn = torch.einsum('bhmd,bhnd->bhmn', q_block, k[:, :, :e]).float() * sm_scale
mask = block_attn_mask[..., s // block_size, : (s // block_size + 1)]
mask = torch.kron(mask, torch.ones(block_size, block_size, device=mask.device))
mask[..., :, s:].masked_fill_(torch.arange(0, block_size)[:, None] <= torch.arange(0, block_size)[None, :], 0)
attn = attn.masked_fill((1 - mask).bool(), float('-inf'))
attn = attn.softmax(-1)
out = torch.einsum('bhmn,bhnd->bhmd', attn.type_as(v), v[:, :, :e])
outs.append(out)
torch_output = torch.cat(outs, dim=2)
else:
attn = torch.einsum('bhmd,bhnd->bhmn', q, k).float() * sm_scale
# import ipdb; ipdb.set_trace()
if attn_mask is not None:
attn = attn.masked_fill((1 - attn_mask).bool(), float('-inf'))
# print(f'> torch attn: {attn.exp().sum(-1)=}')
attn = attn.softmax(-1)
if do is not None:
dv = torch.einsum('bhqk,bhqd->bhkd', attn.type_as(do), do)
print(f'> torch_attn computed dv: {dv=}')
torch_output = torch.einsum('bhmn,bhnd->bhmd', attn.type_as(v), v)
return torch_output
###########################################################
###########################################################
###########################################################
#################### Unit Tests ###########################
###########################################################
@pytest.mark.parametrize('Z, H, N_CTX, D_HEAD', [(2, 8, 2048, 128), (1, 4, 4096, 64)])
def test_op(Z, H, N_CTX, D_HEAD, Q_LEN=None, dtype=torch.bfloat16, homo_head=True, kernel_block_size=None, sparse_block_size=128, backward=True,
sparse_attention_fn=None, local_blocks=4, vert_stride=4, sm_scale=None, max_length=None):
Q_LEN = Q_LEN or N_CTX
torch.manual_seed(20)
q = torch.empty((Z, H, Q_LEN, D_HEAD), dtype=dtype, device='cuda').normal_(mean=0, std=.5) # .requires_grad_()
k = torch.empty((Z, H, N_CTX, D_HEAD), dtype=dtype, device='cuda').normal_(mean=0, std=.5) # .requires_grad_()
v = torch.empty((Z, H, N_CTX, D_HEAD), dtype=dtype, device='cuda').normal_(mean=0, std=.5) # .requires_grad_()
if sm_scale is None:
sm_scale = 1. / math.sqrt(D_HEAD)
# for debugging
# print(f'>> {q.shape=}, {k.shape=}, {v.shape=}, {homo_head=}, {kernel_block_size=}, {sparse_block_size=}, {local_blocks=}, {vert_stride=}')
sm_scale = 0.0078125
if backward:
q.requires_grad_(), k.requires_grad_(), v.requires_grad_()
# qkv = torch.empty((Z, N_CTX, 3*H*D_HEAD), dtype=dtype, device='cuda').normal_(mean=0, std=.5)
# q = qkv[..., :H*D_HEAD]
# k = qkv[..., H*D_HEAD:2*H*D_HEAD]
# v = qkv[..., 2*H*D_HEAD:]
# q = q.view(Z, N_CTX, H, -1).permute(0, 2, 1, 3)
# k = k.view(Z, N_CTX, H, -1).permute(0, 2, 1, 3)
# v = v.view(Z, N_CTX, H, -1).permute(0, 2, 1, 3)
# if Q_LEN and Q_LEN < N_CTX:
# q = q[:, :, -Q_LEN:] # .contiguous()
# q = q.requires_grad_()
# k = k.requires_grad_()
# v = v.requires_grad_()
dout = torch.randn_like(q).contiguous()
# dout = torch.eye(N_CTX)[:, :D_HEAD][None, None].expand_as(q).type_as(q).contiguous()
# print(dout)
mask_csr, _, mask_dense = get_sparse_attn_mask(q, N_CTX, BLOCK=sparse_block_size,
local_blocks=local_blocks, vert_stride=vert_stride, homo_head=homo_head, return_dense=True)
if sparse_attention_fn is None:
sparse_attention_fn = get_local_strided_sparse_attention_op(H, N_CTX,
sparse_block_size=sparse_block_size,
local_blocks=local_blocks,
vert_stride=vert_stride,
homo_head=homo_head,
device=q.device,
dtype=q.dtype,
kernel_block_size=kernel_block_size)
# reference implementation
ref_out = torch_attention(q, k, v, mask_dense, sm_scale)
# lengths = torch.full((Z,), fill_value=N_CTX, device='cuda')
# cu_seqlens = torch.zeros((Z + 1,), device='cuda', dtype=torch.int32)
# cu_seqlens[1:] = lengths.cumsum(0)
# # qkv = torch.randn((Z * N_CTX, 3, H, D_HEAD), dtype=dtype, device='cuda', requires_grad=True)
# qkv_list = list(map(lambda x: x.permute(0, 2, 1, 3).contiguous().view(Z * N_CTX, 1, H, D_HEAD), [q, k, v]))
# qkv = torch.cat(qkv_list, dim=1)
# ref_out0 = flash_attn_func(qkv, cu_seqlens, dropout_p=0, max_s=N_CTX, softmax_scale=sm_scale, causal=True)
# ref_out = ref_out0.view(Z, N_CTX, H, D_HEAD).permute(0, 2, 1, 3).contiguous()
if backward:
ref_out.backward(dout)
ref_dv, v.grad = v.grad.clone(), None
ref_dk, k.grad = k.grad.clone(), None
ref_dq, q.grad = q.grad.clone(), None
tri_out = sparse_attention_fn(q, k, v, sm_scale)
decimal = 1 if dtype == torch.bfloat16 else 2
assert torch.allclose(ref_out.cpu(), tri_out.cpu(), atol=1e-2, rtol=0), f'>> {ref_out[0, 0, :, 0].tolist()=}\n\n{tri_out[0, 0, :, 0].tolist()=}'
if backward:
tri_out.backward(dout)
tri_dv, v.grad = v.grad.clone(), None
tri_dk, k.grad = k.grad.clone(), None
tri_dq, q.grad = q.grad.clone(), None
if backward:
assert torch.allclose(ref_dv, tri_dv, atol=1e-2, rtol=1e-2)
assert torch.allclose(ref_dk, tri_dk, atol=1e-2, rtol=0)
assert torch.allclose(ref_dq, tri_dq, atol=1e-2, rtol=0)
print(f'> test passed: {Z=}, {H=}, {N_CTX=}, {D_HEAD=}, {Q_LEN=}, {dtype=}, {homo_head=}, {sparse_block_size=}')
###########################################################
if __name__ == '__main__':
GPU_TYPE = os.popen('nvidia-smi --query-gpu=name --format=csv | tail -n 1').read().strip()
# print(GPU_TYPE)
support_backward = True # 'A100' in GPU_TYPE. Wasn't supportted in consumer A1000.
###############
# benchmarking
HAS_DENSE_TRITON_FLASH = False
# try:
# from triton.ops.flash_attention import attention as triton_attention
# HAS_DENSE_TRITON_FLASH = True
# except:
# HAS_DENSE_TRITON_FLASH = False
# print('> cannot import Trition flash attn')
try:
from flash_attn.flash_attn_interface import flash_attn_func, flash_attn_unpadded_func
HAS_FLASH = True
except BaseException:
HAS_FLASH = False
print('> cannot import flash_attn')
# BATCH, N_HEADS, N_CTX, D_HEAD = 4, 48, 4096, 64
BATCH, N_HEADS, N_CTX, D_HEAD = 4, 32, 4096, 128 # 6.7B model, with 4k len
# BATCH, N_HEADS, N_CTX, D_HEAD = 4, 16, 4096, 128 # 204m model
BLOCK_SIZE = 64
LOCAl_BLOCKS = 8 # 4
VERT_STRIDE = 1 # 16 # 8
HOMO_HEAD = False
sparse_type = 'home' if HOMO_HEAD else 'hetero'
dtype = torch.bfloat16
modes = ['fwd', 'bwd'] if support_backward else ['fwd']
configs = [triton.testing.Benchmark(
x_names=['SEQ_LEN'],
x_vals=[2**i for i in range(8, 16)],
line_arg='provider',
line_vals=(['triton'] if HAS_DENSE_TRITON_FLASH else []) + (['flash'] if HAS_FLASH else []) + ['triton_sparse'],
line_names=(['Triton-Dense'] if HAS_DENSE_TRITON_FLASH else []) + (['Flash-Dense'] if HAS_FLASH else []) + ['Triton-Sparse'],
styles=[('red', '-'), ('blue', '-'), ('green', '-')],
ylabel='ms',
plot_name=f'fused-attention-batch{BATCH}-head{N_HEADS}-d{D_HEAD}-sparse-local{LOCAl_BLOCKS}-vert{VERT_STRIDE}-{sparse_type}-{dtype}-{mode}',
args={'H': N_HEADS, 'BATCH': BATCH, 'D_HEAD': D_HEAD, 'dtype': dtype, 'mode': mode}
) for mode in modes]
@triton.testing.perf_report(configs)
def bench_flash_attention(BATCH, H, SEQ_LEN, D_HEAD, mode, provider, dtype=torch.bfloat16, device='cuda', sparse_attention_fn=None):
assert mode in ['fwd', 'bwd']
warmup = 25
rep = 100
N_CTX = SEQ_LEN
if provider == 'triton':
q = torch.randn((BATCH, H, N_CTX, D_HEAD), dtype=dtype, device='cuda', requires_grad=True)
k = torch.randn((BATCH, H, N_CTX, D_HEAD), dtype=dtype, device='cuda', requires_grad=True)
v = torch.randn((BATCH, H, N_CTX, D_HEAD), dtype=dtype, device='cuda', requires_grad=True)
sm_scale = 1.3
fn = lambda: triton_attention(q, k, v, sm_scale)
if mode == 'bwd':
o = fn()
do = torch.randn_like(o)
fn = lambda: o.backward(do, retain_graph=True)
ms = triton.testing.do_bench(fn, warmup=warmup, rep=rep)
return ms
if provider == 'triton_sparse':
q = torch.randn((BATCH, H, N_CTX, D_HEAD), dtype=dtype, device='cuda', requires_grad=True)
k = torch.randn((BATCH, H, N_CTX, D_HEAD), dtype=dtype, device='cuda', requires_grad=True)
v = torch.randn((BATCH, H, N_CTX, D_HEAD), dtype=dtype, device='cuda', requires_grad=True)
sm_scale = 1.3
# q_pos = torch.arange(N_CTX // BLOCK, device='cuda')[:, None]
# k_pos = torch.arange(N_CTX // BLOCK, device='cuda')[None]
# local_blocks = 4 # num_block per attn, block_size is tied to BLOCK
# vert_stride =N_CTX + 1 # 4
# mask_vert_strided = torch.arange(N_CTX // BLOCK, device='cuda') % vert_stride == vert_stride - 1
# mask_dense = ((q_pos >= k_pos) & ((q_pos - k_pos < local_blocks) | mask_vert_strided)).type_as(q)
# mask = mask_dense.to_sparse_csr()
# mask_csr, _ = get_sparse_attn_mask(q, N_CTX, BLOCK=BLOCK, local_blocks=LOCAl_BLOCKS, vert_stride=VERT_STRIDE, homo_head=HOMO_HEAD)
if sparse_attention_fn is None:
# sparse_attention_fn = sparse_attention
sparse_attention_fn = get_local_strided_sparse_attention_op(H, SEQ_LEN,
local_blocks=LOCAl_BLOCKS,
vert_stride=VERT_STRIDE,
homo_head=HOMO_HEAD,
sparse_block_size=BLOCK_SIZE,
kernel_block_size=BLOCK_SIZE,
device=q.device)
# sparse_attention_fn = sparse_attention_factory(128, 128, num_warps=8)
# fn = lambda: sparse_attention_fn(q, k, v, mask_csr[0], mask_csr[1], sm_scale)
fn = lambda: sparse_attention_fn(q, k, v, sm_scale)
if mode == 'bwd':
o = fn()
do = torch.randn_like(o)
fn = lambda: o.backward(do, retain_graph=True)
ms = triton.testing.do_bench(fn, warmup=warmup, rep=rep)
return ms
if provider == 'flash':
lengths = torch.full((BATCH,), fill_value=N_CTX, device=device)
cu_seqlens = torch.zeros((BATCH + 1,), device=device, dtype=torch.int32)
cu_seqlens[1:] = lengths.cumsum(0)
qkv = torch.randn((BATCH * N_CTX, 3, H, D_HEAD), dtype=dtype, device=device, requires_grad=True)
fn = lambda: flash_attn_func(qkv, cu_seqlens, 0., N_CTX, causal=True)
if mode == 'bwd':
o = fn()
do = torch.randn_like(o)
fn = lambda: o.backward(do, retain_graph=True)
ms = triton.testing.do_bench(fn, warmup=warmup, rep=rep)
return ms
# if provider == 'torch':
# q = torch.randn((BATCH, H, N_CTX, D_HEAD), dtype=dtype, device='cuda', requires_grad=True)
# k = torch.randn((BATCH, H, N_CTX, D_HEAD), dtype=dtype, device='cuda', requires_grad=True)
# v = torch.randn((BATCH, H, N_CTX, D_HEAD), dtype=dtype, device='cuda', requires_grad=True)
# sm_scale = 1.3
# causal_mask = torch.tril(torch.ones(N_CTX, N_CTX)).type_as(q)
# fn = lambda: torch_attention(q, k, v, causal_mask, sm_scale)
# ms = triton.testing.do_bench(fn, percentiles=None, warmup=warmup, rep=rep)
# return ms
BATCH, N_HEADS, N_CTX, D_HEAD, Q_LEN = 4, 32, 4096, 128, 1 # 6.7B model, with 4k len
BLOCK_SIZE = 64
LOCAl_BLOCKS = 8 # 4
VERT_STRIDE = 16 # 8
HOMO_HEAD = False
sparse_type = 'home' if HOMO_HEAD else 'hetero'
dtype = torch.bfloat16
MAX_N_CTX = 8192
configs = [triton.testing.Benchmark(
x_names=['PAST_LEN'],
x_vals=[2**i - 1 for i in range(8, 14)],
line_arg='provider',
line_vals=['torch'] + (['flash'] if HAS_FLASH else []) + ['triton_sparse', 'triton_dense'],
line_names=['Torch'] + (['Flash-Dense'] if HAS_FLASH else []) + ['Triton-Sparse', 'Triton-Dense'],
styles=[('red', '-'), ('blue', '-'), ('green', '-'), ('cyan', '-')],
ylabel='ms',
plot_name=f'fused-attention-inference-batch{BATCH}-head{N_HEADS}-d{D_HEAD}-sparse-local{LOCAl_BLOCKS}-vert{VERT_STRIDE}-{sparse_type}',
args={'H': N_HEADS, 'BATCH': BATCH, 'D_HEAD': D_HEAD, 'Q_LEN': Q_LEN, 'dtype': torch.float16, 'mode': mode}
) for mode in ['fwd']]
@triton.testing.perf_report(configs)
def bench_flash_attention_inference(BATCH, H, PAST_LEN, D_HEAD, Q_LEN, mode, provider, dtype=torch.bfloat16, device='cuda'):
assert mode in ['fwd']
warmup = 25
rep = 100
N_CTX = PAST_LEN + Q_LEN
if provider == 'torch':
q = torch.randn((BATCH, H, Q_LEN, D_HEAD), dtype=dtype, device='cuda', requires_grad=False)
k = torch.randn((BATCH, H, N_CTX, D_HEAD), dtype=dtype, device='cuda', requires_grad=False)
v = torch.randn((BATCH, H, N_CTX, D_HEAD), dtype=dtype, device='cuda', requires_grad=False)
sm_scale = 1.3
mask_csr, _, mask_dense = get_sparse_attn_mask(q, N_CTX, BLOCK=BLOCK_SIZE,
local_blocks=LOCAl_BLOCKS, vert_stride=VERT_STRIDE, homo_head=VERT_STRIDE, return_dense=True)
fn = lambda: torch_attention(q, k, v, mask_dense, sm_scale=sm_scale, block_size=2048)
ms = triton.testing.do_bench(fn, warmup=warmup, rep=rep)
return ms
if provider == 'triton_sparse':
q = torch.randn((BATCH, H, Q_LEN, D_HEAD), dtype=dtype, device='cuda', requires_grad=False)
k = torch.randn((BATCH, H, N_CTX, D_HEAD), dtype=dtype, device='cuda', requires_grad=False)
v = torch.randn((BATCH, H, N_CTX, D_HEAD), dtype=dtype, device='cuda', requires_grad=False)
sm_scale = 1.3
sparse_attention_fn = get_local_strided_sparse_attention_op(H, MAX_N_CTX,
local_blocks=LOCAl_BLOCKS,
vert_stride=VERT_STRIDE,
homo_head=HOMO_HEAD,
sparse_block_size=BLOCK_SIZE,
kernel_block_size=BLOCK_SIZE,
device=q.device,
inference=True)
fn = lambda: sparse_attention_fn(q, k, v, sm_scale)
ms = triton.testing.do_bench(fn, warmup=warmup, rep=rep)
return ms
if provider == 'triton_dense':
q = torch.randn((BATCH, H, Q_LEN, D_HEAD), dtype=dtype, device='cuda', requires_grad=False)
k = torch.randn((BATCH, H, N_CTX, D_HEAD), dtype=dtype, device='cuda', requires_grad=False)
v = torch.randn((BATCH, H, N_CTX, D_HEAD), dtype=dtype, device='cuda', requires_grad=False)
sm_scale = 1.3
sparse_attention_fn = get_local_strided_sparse_attention_op(H, MAX_N_CTX,
local_blocks=1,
vert_stride=1,
homo_head=True,
sparse_block_size=BLOCK_SIZE,
kernel_block_size=BLOCK_SIZE,
device=q.device,
inference=True)
fn = lambda: sparse_attention_fn(q, k, v, sm_scale)
ms = triton.testing.do_bench(fn, warmup=warmup, rep=rep)
return ms
if provider == 'flash':
assert Q_LEN == 1
lengths = torch.full((BATCH,), fill_value=N_CTX, device=device)
cu_seqlens = torch.zeros((BATCH + 1,), device=device, dtype=torch.int32)
cu_seqlens[1:] = lengths.cumsum(0)
cu_seqlens_q = torch.arange(BATCH + 1, device=device, dtype=torch.int32)
# (total_q, nheads, headdim),
q = torch.randn((BATCH, H, D_HEAD), dtype=dtype, device='cuda', requires_grad=False)
k = torch.randn((BATCH*N_CTX, H, D_HEAD), dtype=dtype, device='cuda', requires_grad=False)
v = torch.randn((BATCH*N_CTX, H, D_HEAD), dtype=dtype, device='cuda', requires_grad=False)
fn = lambda: flash_attn_unpadded_func(q, k, v, cu_seqlens_q, cu_seqlens, 1, N_CTX, dropout_p=0, softmax_scale=1.3, causal=False)
ms = triton.testing.do_bench(fn, warmup=warmup, rep=rep)
return ms
test_op(1, 4, 512, 128, dtype=torch.float16, homo_head=False, backward=support_backward)
# bench_flash_attention.run(save_path='.', print_data=True)
bench_flash_attention_inference.run(save_path='.', print_data=True)
exit()
# head_dim=64
test_op(1, 2, 1024, 64, kernel_block_size=64, sparse_block_size=64,
dtype=torch.bfloat16, homo_head=False, backward=support_backward)
# uneven length, bf16
test_op(1, 16, 224, 128, dtype=torch.bfloat16, homo_head=False, backward=False, sparse_block_size=128,
kernel_block_size=64, local_blocks=8, vert_stride=8)
test_op(3, 2, 2047, 128, homo_head=False, backward=False)
# diff kernel/sparse block size
test_op(1, 16, 224, 128, dtype=torch.bfloat16, homo_head=False, backward=False, kernel_block_size=64)
# inference
# test_op(1, 4, 512 + 256, 128, Q_LEN=1, dtype=torch.bfloat16, homo_head=False, backward=support_backward)
# dense flash attn
test_op(1, 2, 1024, 128, kernel_block_size=128, sparse_block_size=128, dtype=torch.bfloat16, homo_head=False,
backward=support_backward, local_blocks=1, vert_stride=1)
# fp16
test_op(1, 4, 512 + 256, 128, dtype=torch.float16, homo_head=False, backward=support_backward)
# longer sequence
test_op(2, 4, 8192, 64, homo_head=False, backward=support_backward)
test_op(2, 4, 8192, 128, dtype=torch.bfloat16, homo_head=False, backward=support_backward)
# homo head
test_op(3, 2, 2048, 64, homo_head=True, dtype=torch.bfloat16, backward=False)
test_op(3, 2, 2048, 64, homo_head=True, backward=support_backward)
# sparse_attention_fn = sparse_attention_factory(16, 128, num_warps=1, INFERENCE=True)
# test_op(8, 1, 2047, 128, 1, backward=False, sparse_attention_fn=None)
# test_op_inference(3, 2, 2048, 128, 2048)
# test_op_inference(3, 2, 2047, 64, 2047)
# test_op_inference(3, 2, 256, 64, 128)
# test_op_inference(3, 2, 2048, 64, 1)
bench_flash_attention.run(save_path='.', print_data=True)
# bench_flash_attention_inference.run(save_path='.', print_data=True)
# ========================
# Some Benchmark Results #
# ========================
# fused-attention-batch4-head48-d64-sparse-local4-vert4-hetero-fwd
# SEQ_LEN Triton-Dense Flash-Dense Triton-Sparse
# 0 256.0 0.057184 0.069646 0.052567
# 1 512.0 0.131688 0.187658 0.110212
# 2 1024.0 0.391844 0.524990 0.247875
# 3 2048.0 1.305190 1.456685 0.596506
# 4 4096.0 4.623019 4.968653 1.600277
# 5 8192.0 17.513062 18.332262 4.802458
# 6 16384.0 68.453377 70.337540 16.052908
# 7 32768.0 270.655487 276.020233 57.938946
# fused-attention-batch4-head48-d64-sparse-local4-vert4-hetero-bwd (num_warp=8):
# SEQ_LEN Triton-Dense Flash-Dense Triton-Sparse
# 0 256.0 0.190120 0.150313 0.181451
# 1 512.0 0.406348 0.391767 0.391177
# 2 1024.0 1.029704 1.182967 0.885741
# 3 2048.0 2.985456 3.843399 2.040469
# 4 4096.0 9.808897 13.073701 5.069609
# 5 8192.0 34.995201 47.863808 13.948782
# 6 16384.0 132.740097 182.579193 42.816513
# 7 32768.0 542.223389 714.820618 147.053574
# fused-attention-inference-batch4-head32-d128-sparse-local4-vert4-hetero:
# PAST_LEN Torch-Dense Flash-Dense Triton-Sparse
# 0 256.0 0.050949 0.032357 0.107513
# 1 512.0 0.073624 0.050651 0.199086
# 2 1024.0 0.107472 0.080379 0.245445
# 3 2048.0 0.178423 0.129448 0.338259
# 4 4096.0 0.327647 0.223106 0.517048
# 5 8192.0 0.588423 0.411263 0.884606
# 6 16384.0 1.098898 0.798941 1.611809
# 7 32768.0 2.094537 1.594726 3.044160
# 6.7B
# fused-attention-batch4-head32-d128-sparse-local4-vert4-hetero-fwd:
# SEQ_LEN Triton-Dense Flash-Dense Triton-Sparse
# 0 256.0 0.069208 0.082156 0.065097
# 1 512.0 0.138271 0.201393 0.144467
# 2 1024.0 0.391521 0.624614 0.322382
# 3 2048.0 1.268443 2.406325 0.784367
# 4 4096.0 4.455703 9.139097 2.100856
# 5 8192.0 16.764315 35.289600 6.328320
# 6 16384.0 65.221634 138.401794 21.069057
# 7 32768.0 257.251343 548.085754 76.111870
# fused-attention-batch4-head32-d128-sparse-local4-vert4-hetero-bwd:
# SEQ_LEN Triton-Dense Flash-Dense Triton-Sparse
# 0 256.0 0.297118 0.266469 0.255255
# 1 512.0 0.672826 0.613685 0.552954
# 2 1024.0 1.718434 1.705066 1.251953
# 3 2048.0 4.936755 5.403875 2.927895
# 4 4096.0 15.911594 18.959362 7.436288
# 5 8192.0 55.357441 70.808578 21.140224
# 6 16384.0 208.188416 273.617920 68.018173
# 7 32768.0 806.037476 1081.453613 218.720261
# fused-attention-inference-batch4-head32-d128-sparse-local4-vert4-hetero:
# PAST_LEN Torch-Dense Flash-Dense Triton-Sparse
# 0 256.0 0.050151 0.032337 0.107593
# 1 512.0 0.073409 0.051737 0.200200
# 2 1024.0 0.107533 0.082099 0.247067
# 3 2048.0 0.177259 0.128891 0.338510
# 4 4096.0 0.325866 0.223621 0.524842
# 5 8192.0 0.586926 0.408913 0.885490
# 6 16384.0 1.100834 0.793277 1.612271
# 7 32768.0 2.098851 1.595831 3.064544
# fused-attention-batch4-head32-d128-sparse-local4-vert8-hetero-fwd:
# SEQ_LEN Triton-Dense Flash-Dense Triton-Sparse
# 0 256.0 0.066673 0.082037 0.065085
# 1 512.0 0.137379 0.201880 0.143473
# 2 1024.0 0.390675 0.624234 0.312046
# 3 2048.0 1.267739 2.406950 0.696045
# 4 4096.0 4.445138 9.136333 1.665788
# 5 8192.0 16.768614 35.265533 4.380486
# 6 16384.0 65.235970 138.393600 12.997633
# 7 32768.0 257.317902 550.442993 42.821121
# fused-attention-batch4-head32-d128-sparse-local4-vert8-hetero-bwd:
# SEQ_LEN Triton-Dense Flash-Dense Triton-Sparse
# 0 256.0 0.296461 0.266581 0.254022
# 1 512.0 0.671427 0.613643 0.551283
# 2 1024.0 1.719918 1.704295 1.229982
# 3 2048.0 4.945305 5.403364 2.721906
# 4 4096.0 15.934293 18.960999 6.259371
# 5 8192.0 55.406593 70.832130 15.676929
# 6 16384.0 208.750595 275.004425 44.837891
# 7 32768.0 808.057861 1080.647705 141.856766
# fused-attention-inference-batch4-head32-d128-sparse-local4-vert8-hetero:
# PAST_LEN Torch-Dense Flash-Dense Triton-Sparse
# 0 256.0 0.050739 0.032886 0.107837
# 1 512.0 0.073507 0.051996 0.200293
# 2 1024.0 0.106394 0.080679 0.240610
# 3 2048.0 0.177659 0.127660 0.287625
# 4 4096.0 0.326326 0.226971 0.377500
# 5 8192.0 0.586339 0.407367 0.559266
# 6 16384.0 1.102279 0.786221 0.920976
# 7 32768.0 2.097370 1.545090 1.644288
################
##### fp16 #####
################
# fused-attention-batch4-head16-d64-sparse-local4-vert8-hetero-fwd:
# SEQ_LEN Triton-Dense Flash-Dense Triton-Sparse
# 0 256.0 0.032518 0.035472 0.029939
# 1 512.0 0.054266 0.087841 0.054320
# 2 1024.0 0.133447 0.263090 0.102045
# 3 2048.0 0.384615 1.023293 0.201763
# 4 4096.0 1.300890 4.023936 0.449555
# 5 8192.0 4.774144 15.816704 1.150854
# 6 16384.0 18.220032 62.771198 3.356001
# 7 32768.0 71.405571 250.273788 10.976142
# fused-attention-batch4-head16-d64-sparse-local4-vert8-hetero-bwd:
# SEQ_LEN Triton-Dense Flash-Dense Triton-Sparse
# 0 256.0 0.083342 0.069742 0.079496
# 1 512.0 0.159894 0.170995 0.151705
# 2 1024.0 0.386071 0.522407 0.331443
# 3 2048.0 1.067715 1.737333 0.715248
# 4 4096.0 3.382731 6.219520 1.597457
# 5 8192.0 11.857793 23.560448 3.879035
# 6 16384.0 44.422142 91.251709 10.626843
# 7 32768.0 175.011841 359.473145 32.340992
################
##### bf16 #####
################
# fused-attention-batch4-head16-d64-sparse-local4-vert8-hetero-fwd:
# SEQ_LEN Triton-Dense Flash-Dense Triton-Sparse
# 0 256.0 0.037636 0.035902 0.031512
# 1 512.0 0.058591 0.087229 0.058125
# 2 1024.0 0.143337 0.263919 0.108443
# 3 2048.0 0.414458 1.025985 0.214114
# 4 4096.0 1.390841 4.020010 0.480550
# 5 8192.0 5.067938 15.808171 1.230874
# 6 16384.0 19.442280 62.765057 3.597274
# 7 32768.0 75.501572 250.443771 11.768959
# fused-attention-batch4-head16-d64-sparse-local4-vert8-hetero-bwd:
# SEQ_LEN Triton-Dense Flash-Dense Triton-Sparse
# 0 256.0 0.084404 0.070663 0.082613
# 1 512.0 0.161510 0.172882 0.157661
# 2 1024.0 0.388954 0.526047 0.339855
# 3 2048.0 1.075814 1.736057 0.732420
# 4 4096.0 3.401622 6.221376 1.636039
# 5 8192.0 11.915136 23.483391 3.968725
# 6 16384.0 44.660225 91.302910 10.857130
# 7 32768.0 175.038467 359.048187 32.778240
|