|
--- |
|
license: apache-2.0 |
|
base_model: facebook/convnextv2-base-1k-224 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- imagefolder |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: convnextv2-base-1k-224-finetuned-cassava-leaf-disease |
|
results: |
|
- task: |
|
name: Image Classification |
|
type: image-classification |
|
dataset: |
|
name: imagefolder |
|
type: imagefolder |
|
config: default |
|
split: train |
|
args: default |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.8845794392523364 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# convnextv2-base-1k-224-finetuned-cassava-leaf-disease |
|
|
|
This model is a fine-tuned version of [facebook/convnextv2-base-1k-224](https://huggingface.co/facebook/convnextv2-base-1k-224) on the imagefolder dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.3329 |
|
- Accuracy: 0.8846 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 240 |
|
- eval_batch_size: 240 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 960 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 15 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:| |
|
| 2.7644 | 0.99 | 20 | 1.5288 | 0.6140 | |
|
| 0.8358 | 1.98 | 40 | 0.6582 | 0.7584 | |
|
| 0.5367 | 2.96 | 60 | 0.4823 | 0.8229 | |
|
| 0.4645 | 4.0 | 81 | 0.4269 | 0.8556 | |
|
| 0.4218 | 4.99 | 101 | 0.3912 | 0.8659 | |
|
| 0.391 | 5.98 | 121 | 0.3637 | 0.8748 | |
|
| 0.3789 | 6.96 | 141 | 0.3554 | 0.8748 | |
|
| 0.3684 | 8.0 | 162 | 0.3489 | 0.8790 | |
|
| 0.3671 | 8.99 | 182 | 0.3503 | 0.8813 | |
|
| 0.3545 | 9.98 | 202 | 0.3442 | 0.8818 | |
|
| 0.339 | 10.96 | 222 | 0.3369 | 0.8841 | |
|
| 0.3225 | 12.0 | 243 | 0.3424 | 0.8808 | |
|
| 0.3228 | 12.99 | 263 | 0.3386 | 0.8850 | |
|
| 0.3141 | 13.98 | 283 | 0.3344 | 0.8846 | |
|
| 0.3219 | 14.81 | 300 | 0.3329 | 0.8846 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.37.2 |
|
- Pytorch 2.2.1 |
|
- Datasets 2.18.0 |
|
- Tokenizers 0.15.1 |
|
|