louislu9911's picture
Model save
95da58f verified
|
raw
history blame
2.74 kB
metadata
license: apache-2.0
base_model: facebook/convnextv2-base-1k-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: convnextv2-base-1k-224-finetuned-cassava-leaf-disease
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8845794392523364

convnextv2-base-1k-224-finetuned-cassava-leaf-disease

This model is a fine-tuned version of facebook/convnextv2-base-1k-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3329
  • Accuracy: 0.8846

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 240
  • eval_batch_size: 240
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 960
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Accuracy
2.7644 0.99 20 1.5288 0.6140
0.8358 1.98 40 0.6582 0.7584
0.5367 2.96 60 0.4823 0.8229
0.4645 4.0 81 0.4269 0.8556
0.4218 4.99 101 0.3912 0.8659
0.391 5.98 121 0.3637 0.8748
0.3789 6.96 141 0.3554 0.8748
0.3684 8.0 162 0.3489 0.8790
0.3671 8.99 182 0.3503 0.8813
0.3545 9.98 202 0.3442 0.8818
0.339 10.96 222 0.3369 0.8841
0.3225 12.0 243 0.3424 0.8808
0.3228 12.99 263 0.3386 0.8850
0.3141 13.98 283 0.3344 0.8846
0.3219 14.81 300 0.3329 0.8846

Framework versions

  • Transformers 4.37.2
  • Pytorch 2.2.1
  • Datasets 2.18.0
  • Tokenizers 0.15.1