metadata
tags:
- merge
- mergekit
- MTSAIR/multi_verse_model
- rwitz/experiment26-truthy-iter-0
- MaziyarPanahi/Calme-7B-Instruct-v0.2
- chemistry
- biology
- math
base_model:
- MTSAIR/multi_verse_model
- rwitz/experiment26-truthy-iter-0
- MaziyarPanahi/Calme-7B-Instruct-v0.2
license: apache-2.0
language:
- en
library_name: transformers
pipeline_tag: text-generation
Maxine-7B-0401-stock, an xtraordinary 7B model
03-22-2024 - To date, louisbrulenaudet/Pearl-34B-ties is the "Best 🤝 base merges and moerges model of around 30B" on the Open LLM Leaderboard.
Configuration
models:
- model: OpenPipe/mistral-ft-optimized-1227
- model: MTSAIR/multi_verse_model
- model: rwitz/experiment26-truthy-iter-0
- model: MaziyarPanahi/Calme-7B-Instruct-v0.2
merge_method: model_stock
base_model: OpenPipe/mistral-ft-optimized-1227
dtype: bfloat16
Usage
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "louisbrulenaudet/Maxine-7B-0401-stock"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
Citing & Authors
If you use this code in your research, please use the following BibTeX entry.
@misc{louisbrulenaudet2023,
author = {Louis Brulé Naudet},
title = {Maxine-7B-0401-stock, an xtraordinary 7B model},
year = {2023}
howpublished = {\url{https://huggingface.co/louisbrulenaudet/Maxine-7B-0401-stock}},
}
Feedback
If you have any feedback, please reach out at louisbrulenaudet@icloud.com.
license: apache-2.0 language: - en pipeline_tag: text-generation
9o
license: base_model: tags: - merge - mergekit - lazymergekit
Maxine-7B-0401-stock
Maxine-7B-0401-stock is a merge of the following models:
Configuration
Usage
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "louisbrulenaudet/Maxine-7B-0401-stock"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])