minecraft-lora LoRA by louiejancevski
None
Inference with Replicate API
Grab your replicate token here
pip install replicate
export REPLICATE_API_TOKEN=r8_*************************************
import replicate
output = replicate.run(
"minecraft-lora@sha256:f59d2b65936fd971ea9da929a6c681664882491584364bf454cf2d464cfdd04d",
input={"prompt": "two men minecraft_style"}
)
print(output)
You may also do inference via the API with Node.js or curl, and locally with COG and Docker, check out the Replicate API page for this model
Inference with 🧨 diffusers
Replicate SDXL LoRAs are trained with Pivotal Tuning, which combines training a concept via Dreambooth LoRA with training a new token with Textual Inversion.
As diffusers
doesn't yet support textual inversion for SDXL, we will use cog-sdxl TokenEmbeddingsHandler
class.
The trigger tokens for your prompt will be ``
pip install diffusers transformers accelerate safetensors huggingface_hub
git clone https://github.com/replicate/cog-sdxl cog_sdxl
import torch
from huggingface_hub import hf_hub_download
from diffusers import DiffusionPipeline
from safetensors.torch import load_file
from diffusers.models import AutoencoderKL
pipe = DiffusionPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0",
torch_dtype=torch.float16,
variant="fp16",
).to("cuda")
pipe.load_lora_weights("louiejancevski/minecraft-lora", weight_name="lora.safetensors")
embedding_path = hf_hub_download(repo_id="louiejancevski/minecraft-lora", filename="embeddings.pti", repo_type="model")
state_dict = load_file(embedding_path)
pipe.load_textual_inversion(state_dict["text_encoders_0"], token=["<s0>", "<s1>"], text_encoder=pipeline.text_encoder, tokenizer=pipeline.tokenizer)
pipe.load_textual_inversion(state_dict["text_encoders_1"], token=["<s0>", "<s1>"], text_encoder=pipeline.text_encoder_2, tokenizer=pipeline.tokenizer_2)
prompt="two men minecraft_style"
images = pipe(
prompt,
cross_attention_kwargs={"scale": 0.8},
).images
#your output image
images[0]
- Downloads last month
- 0
Model tree for louiejancevski/minecraft-lora
Base model
stabilityai/stable-diffusion-xl-base-1.0