File size: 5,348 Bytes
846d1ae c1cded6 846d1ae 930ff3e 846d1ae 80f3688 846d1ae a74d1e1 c1cded6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 |
---
license: llama2
inference: false
model-index:
- name: vicuna-13b-v1.5-16k
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 56.74
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=lmsys/vicuna-13b-v1.5-16k
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 80.37
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=lmsys/vicuna-13b-v1.5-16k
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 55.28
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=lmsys/vicuna-13b-v1.5-16k
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 51.96
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=lmsys/vicuna-13b-v1.5-16k
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 72.38
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=lmsys/vicuna-13b-v1.5-16k
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 13.12
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=lmsys/vicuna-13b-v1.5-16k
name: Open LLM Leaderboard
---
# Vicuna Model Card
## Model Details
Vicuna is a chat assistant trained by fine-tuning Llama 2 on user-shared conversations collected from ShareGPT.
- **Developed by:** [LMSYS](https://lmsys.org/)
- **Model type:** An auto-regressive language model based on the transformer architecture
- **License:** Llama 2 Community License Agreement
- **Finetuned from model:** [Llama 2](https://arxiv.org/abs/2307.09288)
### Model Sources
- **Repository:** https://github.com/lm-sys/FastChat
- **Blog:** https://lmsys.org/blog/2023-03-30-vicuna/
- **Paper:** https://arxiv.org/abs/2306.05685
- **Demo:** https://chat.lmsys.org/
## Uses
The primary use of Vicuna is research on large language models and chatbots.
The primary intended users of the model are researchers and hobbyists in natural language processing, machine learning, and artificial intelligence.
## How to Get Started with the Model
- Command line interface: https://github.com/lm-sys/FastChat#vicuna-weights
- APIs (OpenAI API, Huggingface API): https://github.com/lm-sys/FastChat/tree/main#api
## Training Details
Vicuna v1.5 (16k) is fine-tuned from Llama 2 with supervised instruction fine-tuning and linear RoPE scaling.
The training data is around 125K conversations collected from ShareGPT.com. These conversations are packed into sequences that contain 16K tokens each.
See more details in the "Training Details of Vicuna Models" section in the appendix of this [paper](https://arxiv.org/pdf/2306.05685.pdf).
## Evaluation
![Evaluation Results](https://github.com/lm-sys/lm-sys.github.io/blob/main/public/images/webdata/vicuna_v1.5_eval.png?raw=true)
Vicuna is evaluated with standard benchmarks, human preference, and LLM-as-a-judge. See more details in this [paper](https://arxiv.org/pdf/2306.05685.pdf) and [leaderboard](https://huggingface.co/spaces/lmsys/chatbot-arena-leaderboard).
## Difference between different versions of Vicuna
See [vicuna_weights_version.md](https://github.com/lm-sys/FastChat/blob/main/docs/vicuna_weights_version.md)
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_lmsys__vicuna-13b-v1.5-16k)
| Metric |Value|
|---------------------------------|----:|
|Avg. |54.97|
|AI2 Reasoning Challenge (25-Shot)|56.74|
|HellaSwag (10-Shot) |80.37|
|MMLU (5-Shot) |55.28|
|TruthfulQA (0-shot) |51.96|
|Winogrande (5-shot) |72.38|
|GSM8k (5-shot) |13.12|
|