File size: 12,684 Bytes
37d6f58 4616cbd 37d6f58 4616cbd 37d6f58 4616cbd 37d6f58 06a3cd5 37d6f58 5d0447c 29d3896 5d0447c 29d3896 5d0447c 29d3896 5d0447c 29d3896 5d0447c 29d3896 37d6f58 29d3896 37d6f58 5d0447c 29d3896 5d0447c 29d3896 5d0447c 29d3896 5d0447c 29d3896 5d0447c 29d3896 37d6f58 29d3896 37d6f58 5d0447c 29d3896 5d0447c 29d3896 5d0447c 29d3896 5d0447c 29d3896 5d0447c 29d3896 37d6f58 29d3896 37d6f58 5d0447c 29d3896 5d0447c 29d3896 5d0447c 29d3896 5d0447c 29d3896 5d0447c 29d3896 37d6f58 29d3896 37d6f58 5d0447c 29d3896 5d0447c 29d3896 5d0447c 29d3896 5d0447c 29d3896 5d0447c 29d3896 37d6f58 29d3896 37d6f58 5d0447c 29d3896 5d0447c 29d3896 5d0447c 29d3896 5d0447c 29d3896 5d0447c 29d3896 37d6f58 29d3896 37d6f58 5d0447c 29d3896 5d0447c 29d3896 5d0447c 29d3896 5d0447c 29d3896 5d0447c 29d3896 37d6f58 29d3896 37d6f58 5d0447c 29d3896 5d0447c 29d3896 5d0447c 29d3896 5d0447c 29d3896 5d0447c 29d3896 37d6f58 06a3cd5 29d3896 37d6f58 6a4a582 37d6f58 6a4a582 37d6f58 6a4a582 29d3896 6a4a582 06a3cd5 29d3896 6a4a582 29d3896 6a4a582 37d6f58 6a4a582 f278e5b 06a3cd5 29d3896 37d6f58 29d3896 37d6f58 29d3896 37d6f58 06a3cd5 37d6f58 29d3896 37d6f58 29d3896 37d6f58 29d3896 06a3cd5 37d6f58 06a3cd5 37d6f58 6a4a582 f278e5b 6a4a582 f278e5b 6a4a582 f278e5b 6a4a582 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 |
---
license: cc-by-4.0
metrics:
- bleu4
- meteor
- rouge-l
- bertscore
- moverscore
language: en
datasets:
- lmqg/qg_squad
pipeline_tag: text2text-generation
tags:
- question generation
widget:
- text: "<hl> Beyonce <hl> further expanded her acting career, starring as blues singer Etta James in the 2008 musical biopic, Cadillac Records."
example_title: "Question Generation Example 1"
- text: "Beyonce further expanded her acting career, starring as blues singer <hl> Etta James <hl> in the 2008 musical biopic, Cadillac Records."
example_title: "Question Generation Example 2"
- text: "Beyonce further expanded her acting career, starring as blues singer Etta James in the 2008 musical biopic, <hl> Cadillac Records <hl> ."
example_title: "Question Generation Example 3"
model-index:
- name: lmqg/mt5-small-squad-qg
results:
- task:
name: Text2text Generation
type: text2text-generation
dataset:
name: lmqg/qg_squad
type: default
args: default
metrics:
- name: BLEU4 (Question Generation)
type: bleu4_question_generation
value: 21.65
- name: ROUGE-L (Question Generation)
type: rouge_l_question_generation
value: 48.95
- name: METEOR (Question Generation)
type: meteor_question_generation
value: 23.83
- name: BERTScore (Question Generation)
type: bertscore_question_generation
value: 90.01
- name: MoverScore (Question Generation)
type: moverscore_question_generation
value: 62.75
- task:
name: Text2text Generation
type: text2text-generation
dataset:
name: lmqg/qg_dequad
type: default
args: default
metrics:
- name: BLEU4 (Question Generation)
type: bleu4_question_generation
value: 9.242783121165897e-12
- name: ROUGE-L (Question Generation)
type: rouge_l_question_generation
value: 0.01556150764938016
- name: METEOR (Question Generation)
type: meteor_question_generation
value: 0.04809700451843158
- name: BERTScore (Question Generation)
type: bertscore_question_generation
value: 0.7353078946893743
- name: MoverScore (Question Generation)
type: moverscore_question_generation
value: 0.5036973829954939
- task:
name: Text2text Generation
type: text2text-generation
dataset:
name: lmqg/qg_esquad
type: default
args: default
metrics:
- name: BLEU4 (Question Generation)
type: bleu4_question_generation
value: 0.0059191752064594125
- name: ROUGE-L (Question Generation)
type: rouge_l_question_generation
value: 0.05208940592236566
- name: METEOR (Question Generation)
type: meteor_question_generation
value: 0.06021086135293597
- name: BERTScore (Question Generation)
type: bertscore_question_generation
value: 0.7494422899749911
- name: MoverScore (Question Generation)
type: moverscore_question_generation
value: 0.5062373132800192
- task:
name: Text2text Generation
type: text2text-generation
dataset:
name: lmqg/qg_frquad
type: default
args: default
metrics:
- name: BLEU4 (Question Generation)
type: bleu4_question_generation
value: 0.0171464639522496
- name: ROUGE-L (Question Generation)
type: rouge_l_question_generation
value: 0.1583673053928925
- name: METEOR (Question Generation)
type: meteor_question_generation
value: 0.08244973027319356
- name: BERTScore (Question Generation)
type: bertscore_question_generation
value: 0.7291012183458674
- name: MoverScore (Question Generation)
type: moverscore_question_generation
value: 0.509610854598101
- task:
name: Text2text Generation
type: text2text-generation
dataset:
name: lmqg/qg_itquad
type: default
args: default
metrics:
- name: BLEU4 (Question Generation)
type: bleu4_question_generation
value: 0.005438910607183992
- name: ROUGE-L (Question Generation)
type: rouge_l_question_generation
value: 0.05010570221421983
- name: METEOR (Question Generation)
type: meteor_question_generation
value: 0.05890828426558759
- name: BERTScore (Question Generation)
type: bertscore_question_generation
value: 0.7260160158030385
- name: MoverScore (Question Generation)
type: moverscore_question_generation
value: 0.5023119088393686
- task:
name: Text2text Generation
type: text2text-generation
dataset:
name: lmqg/qg_jaquad
type: default
args: default
metrics:
- name: BLEU4 (Question Generation)
type: bleu4_question_generation
value: 4.4114578660129224e-08
- name: ROUGE-L (Question Generation)
type: rouge_l_question_generation
value: 0.06084267343290677
- name: METEOR (Question Generation)
type: meteor_question_generation
value: 0.005149267426183168
- name: BERTScore (Question Generation)
type: bertscore_question_generation
value: 0.6608093198082075
- name: MoverScore (Question Generation)
type: moverscore_question_generation
value: 0.46526108687696893
- task:
name: Text2text Generation
type: text2text-generation
dataset:
name: lmqg/qg_koquad
type: default
args: default
metrics:
- name: BLEU4 (Question Generation)
type: bleu4_question_generation
value: 1.4750917137316939e-12
- name: ROUGE-L (Question Generation)
type: rouge_l_question_generation
value: 0.0006466767450454226
- name: METEOR (Question Generation)
type: meteor_question_generation
value: 0.007310046912436679
- name: BERTScore (Question Generation)
type: bertscore_question_generation
value: 0.6634288882769679
- name: MoverScore (Question Generation)
type: moverscore_question_generation
value: 0.4586124640357038
- task:
name: Text2text Generation
type: text2text-generation
dataset:
name: lmqg/qg_ruquad
type: default
args: default
metrics:
- name: BLEU4 (Question Generation)
type: bleu4_question_generation
value: 4.229109829516021e-12
- name: ROUGE-L (Question Generation)
type: rouge_l_question_generation
value: 0.009881091250723615
- name: METEOR (Question Generation)
type: meteor_question_generation
value: 0.017796529053904556
- name: BERTScore (Question Generation)
type: bertscore_question_generation
value: 0.7089446693028568
- name: MoverScore (Question Generation)
type: moverscore_question_generation
value: 0.49098728551715626
---
# Model Card of `lmqg/mt5-small-squad-qg`
This model is fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) for question generation task on the [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) (dataset_name: default) via [`lmqg`](https://github.com/asahi417/lm-question-generation).
### Overview
- **Language model:** [google/mt5-small](https://huggingface.co/google/mt5-small)
- **Language:** en
- **Training data:** [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) (default)
- **Online Demo:** [https://autoqg.net/](https://autoqg.net/)
- **Repository:** [https://github.com/asahi417/lm-question-generation](https://github.com/asahi417/lm-question-generation)
- **Paper:** [https://arxiv.org/abs/2210.03992](https://arxiv.org/abs/2210.03992)
### Usage
- With [`lmqg`](https://github.com/asahi417/lm-question-generation#lmqg-language-model-for-question-generation-)
```python
from lmqg import TransformersQG
# initialize model
model = TransformersQG(language="en", model="lmqg/mt5-small-squad-qg")
# model prediction
questions = model.generate_q(list_context="William Turner was an English painter who specialised in watercolour landscapes", list_answer="William Turner")
```
- With `transformers`
```python
from transformers import pipeline
pipe = pipeline("text2text-generation", "lmqg/mt5-small-squad-qg")
output = pipe("<hl> Beyonce <hl> further expanded her acting career, starring as blues singer Etta James in the 2008 musical biopic, Cadillac Records.")
```
## Evaluation
- ***Metric (Question Generation)***: [raw metric file](https://huggingface.co/lmqg/mt5-small-squad-qg/raw/main/eval/metric.first.sentence.paragraph_answer.question.lmqg_qg_squad.default.json)
| | Score | Type | Dataset |
|:-----------|--------:|:--------|:---------------------------------------------------------------|
| BERTScore | 90.01 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) |
| Bleu_1 | 54.07 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) |
| Bleu_2 | 37.62 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) |
| Bleu_3 | 28.18 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) |
| Bleu_4 | 21.65 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) |
| METEOR | 23.83 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) |
| MoverScore | 62.75 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) |
| ROUGE_L | 48.95 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) |
- ***Metrics (Question Generation, Out-of-Domain)***
| Dataset | Type | BERTScore| Bleu_4 | METEOR | MoverScore | ROUGE_L | Link |
|:--------|:-----|---------:|-------:|-------:|-----------:|--------:|-----:|
| [lmqg/qg_dequad](https://huggingface.co/datasets/lmqg/qg_dequad) | default | 73.53 | 0.0 | 4.81 | 50.37 | 1.56 | [link](https://huggingface.co/lmqg/mt5-small-squad-qg/raw/main/eval_ood/metric.first.sentence.paragraph_answer.question.lmqg_qg_dequad.default.json) |
| [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) | default | 74.94 | 0.59 | 6.02 | 50.62 | 5.21 | [link](https://huggingface.co/lmqg/mt5-small-squad-qg/raw/main/eval_ood/metric.first.sentence.paragraph_answer.question.lmqg_qg_esquad.default.json) |
| [lmqg/qg_frquad](https://huggingface.co/datasets/lmqg/qg_frquad) | default | 72.91 | 1.71 | 8.24 | 50.96 | 15.84 | [link](https://huggingface.co/lmqg/mt5-small-squad-qg/raw/main/eval_ood/metric.first.sentence.paragraph_answer.question.lmqg_qg_frquad.default.json) |
| [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) | default | 72.6 | 0.54 | 5.89 | 50.23 | 5.01 | [link](https://huggingface.co/lmqg/mt5-small-squad-qg/raw/main/eval_ood/metric.first.sentence.paragraph_answer.question.lmqg_qg_itquad.default.json) |
| [lmqg/qg_jaquad](https://huggingface.co/datasets/lmqg/qg_jaquad) | default | 66.08 | 0.0 | 0.51 | 46.53 | 6.08 | [link](https://huggingface.co/lmqg/mt5-small-squad-qg/raw/main/eval_ood/metric.first.sentence.paragraph_answer.question.lmqg_qg_jaquad.default.json) |
| [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) | default | 66.34 | 0.0 | 0.73 | 45.86 | 0.06 | [link](https://huggingface.co/lmqg/mt5-small-squad-qg/raw/main/eval_ood/metric.first.sentence.paragraph_answer.question.lmqg_qg_koquad.default.json) |
| [lmqg/qg_ruquad](https://huggingface.co/datasets/lmqg/qg_ruquad) | default | 70.89 | 0.0 | 1.78 | 49.1 | 0.99 | [link](https://huggingface.co/lmqg/mt5-small-squad-qg/raw/main/eval_ood/metric.first.sentence.paragraph_answer.question.lmqg_qg_ruquad.default.json) |
## Training hyperparameters
The following hyperparameters were used during fine-tuning:
- dataset_path: lmqg/qg_squad
- dataset_name: default
- input_types: ['paragraph_answer']
- output_types: ['question']
- prefix_types: None
- model: google/mt5-small
- max_length: 512
- max_length_output: 32
- epoch: 15
- batch: 64
- lr: 0.0005
- fp16: False
- random_seed: 1
- gradient_accumulation_steps: 1
- label_smoothing: 0.15
The full configuration can be found at [fine-tuning config file](https://huggingface.co/lmqg/mt5-small-squad-qg/raw/main/trainer_config.json).
## Citation
```
@inproceedings{ushio-etal-2022-generative,
title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration",
author = "Ushio, Asahi and
Alva-Manchego, Fernando and
Camacho-Collados, Jose",
booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
month = dec,
year = "2022",
address = "Abu Dhabi, U.A.E.",
publisher = "Association for Computational Linguistics",
}
```
|