File size: 10,223 Bytes
ce447da 5e1fd84 ce447da 5e1fd84 ce447da 5e1fd84 ce447da 8ce56de ce447da 86ef70d 6d47e30 86ef70d 6d47e30 86ef70d 6d47e30 86ef70d 6d47e30 86ef70d 6d47e30 7b92c1a f7d5b81 7b92c1a f7d5b81 7b92c1a f7d5b81 7b92c1a f7d5b81 7b92c1a f7d5b81 7b92c1a 6d47e30 7b92c1a 6d47e30 7b92c1a 6d47e30 7b92c1a 6d47e30 7b92c1a 6d47e30 7b92c1a 6d47e30 ce447da 8ce56de 6d47e30 ce447da 6db5ec5 ce447da 6db5ec5 ce447da 6db5ec5 6d47e30 6db5ec5 8ce56de 6d47e30 6db5ec5 6d47e30 6db5ec5 ce447da 6db5ec5 6d47e30 8ce56de 6d47e30 2ab24d6 ce447da 6d47e30 ce447da 8ce56de ce447da 6d47e30 ce447da 7b92c1a 67749ce 6d47e30 f7d5b81 6d47e30 f7d5b81 67749ce ce447da 8ce56de ce447da 6db5ec5 2ab24d6 6db5ec5 2ab24d6 6db5ec5 2ab24d6 6db5ec5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 |
---
license: cc-by-4.0
metrics:
- bleu4
- meteor
- rouge-l
- bertscore
- moverscore
language: ko
datasets:
- lmqg/qg_koquad
pipeline_tag: text2text-generation
tags:
- question generation
widget:
- text: "1990년 영화 《 <hl> 남부군 <hl> 》에서 단역으로 영화배우 첫 데뷔에 이어 같은 해 KBS 드라마 《지구인》에서 단역으로 출연하였고 이듬해 MBC 《여명의 눈동자》를 통해 단역으로 출연하였다."
example_title: "Question Generation Example 1"
- text: "백신이 없기때문에 예방책은 <hl> 살충제 <hl> 를 사용하면서 서식 장소(찻찬 받침, 배수로, 고인 물의 열린 저장소, 버려진 타이어 등)의 수를 줄임으로써 매개체를 통제할 수 있다."
example_title: "Question Generation Example 2"
- text: "<hl> 원테이크 촬영 <hl> 이기 때문에 한 사람이 실수를 하면 처음부터 다시 찍어야 하는 상황이 발생한다."
example_title: "Question Generation Example 3"
model-index:
- name: lmqg/mt5-small-koquad-qg
results:
- task:
name: Text2text Generation
type: text2text-generation
dataset:
name: lmqg/qg_koquad
type: default
args: default
metrics:
- name: BLEU4 (Question Generation)
type: bleu4_question_generation
value: 10.57
- name: ROUGE-L (Question Generation)
type: rouge_l_question_generation
value: 25.64
- name: METEOR (Question Generation)
type: meteor_question_generation
value: 27.52
- name: BERTScore (Question Generation)
type: bertscore_question_generation
value: 82.89
- name: MoverScore (Question Generation)
type: moverscore_question_generation
value: 82.49
- name: BLEU4 (Question & Answer Generation (with Gold Answer))
type: bleu4_question_answer_generation_with_gold_answer
value: 10.86
- name: ROUGE-L (Question & Answer Generation (with Gold Answer))
type: rouge_l_question_answer_generation_with_gold_answer
value: 46.66
- name: METEOR (Question & Answer Generation (with Gold Answer))
type: meteor_question_answer_generation_with_gold_answer
value: 36.66
- name: BERTScore (Question & Answer Generation (with Gold Answer))
type: bertscore_question_answer_generation_with_gold_answer
value: 87.21
- name: MoverScore (Question & Answer Generation (with Gold Answer))
type: moverscore_question_answer_generation_with_gold_answer
value: 84.46
- name: QAAlignedF1Score-BERTScore (Question & Answer Generation (with Gold Answer)) [Gold Answer]
type: qa_aligned_f1_score_bertscore_question_answer_generation_with_gold_answer_gold_answer
value: 87.52
- name: QAAlignedRecall-BERTScore (Question & Answer Generation (with Gold Answer)) [Gold Answer]
type: qa_aligned_recall_bertscore_question_answer_generation_with_gold_answer_gold_answer
value: 87.49
- name: QAAlignedPrecision-BERTScore (Question & Answer Generation (with Gold Answer)) [Gold Answer]
type: qa_aligned_precision_bertscore_question_answer_generation_with_gold_answer_gold_answer
value: 87.57
- name: QAAlignedF1Score-MoverScore (Question & Answer Generation (with Gold Answer)) [Gold Answer]
type: qa_aligned_f1_score_moverscore_question_answer_generation_with_gold_answer_gold_answer
value: 85.15
- name: QAAlignedRecall-MoverScore (Question & Answer Generation (with Gold Answer)) [Gold Answer]
type: qa_aligned_recall_moverscore_question_answer_generation_with_gold_answer_gold_answer
value: 85.09
- name: QAAlignedPrecision-MoverScore (Question & Answer Generation (with Gold Answer)) [Gold Answer]
type: qa_aligned_precision_moverscore_question_answer_generation_with_gold_answer_gold_answer
value: 85.23
---
# Model Card of `lmqg/mt5-small-koquad-qg`
This model is fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) for question generation task on the [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) (dataset_name: default) via [`lmqg`](https://github.com/asahi417/lm-question-generation).
### Overview
- **Language model:** [google/mt5-small](https://huggingface.co/google/mt5-small)
- **Language:** ko
- **Training data:** [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) (default)
- **Online Demo:** [https://autoqg.net/](https://autoqg.net/)
- **Repository:** [https://github.com/asahi417/lm-question-generation](https://github.com/asahi417/lm-question-generation)
- **Paper:** [https://arxiv.org/abs/2210.03992](https://arxiv.org/abs/2210.03992)
### Usage
- With [`lmqg`](https://github.com/asahi417/lm-question-generation#lmqg-language-model-for-question-generation-)
```python
from lmqg import TransformersQG
# initialize model
model = TransformersQG(language="ko", model="lmqg/mt5-small-koquad-qg")
# model prediction
questions = model.generate_q(list_context="1990년 영화 《 남부군 》에서 단역으로 영화배우 첫 데뷔에 이어 같은 해 KBS 드라마 《지구인》에서 단역으로 출연하였고 이듬해 MBC 《여명의 눈동자》를 통해 단역으로 출연하였다.", list_answer="남부군")
```
- With `transformers`
```python
from transformers import pipeline
pipe = pipeline("text2text-generation", "lmqg/mt5-small-koquad-qg")
output = pipe("1990년 영화 《 <hl> 남부군 <hl> 》에서 단역으로 영화배우 첫 데뷔에 이어 같은 해 KBS 드라마 《지구인》에서 단역으로 출연하였고 이듬해 MBC 《여명의 눈동자》를 통해 단역으로 출연하였다.")
```
## Evaluation
- ***Metric (Question Generation)***: [raw metric file](https://huggingface.co/lmqg/mt5-small-koquad-qg/raw/main/eval/metric.first.sentence.paragraph_answer.question.lmqg_qg_koquad.default.json)
| | Score | Type | Dataset |
|:-----------|--------:|:--------|:-----------------------------------------------------------------|
| BERTScore | 82.89 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) |
| Bleu_1 | 25.31 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) |
| Bleu_2 | 18.59 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) |
| Bleu_3 | 13.98 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) |
| Bleu_4 | 10.57 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) |
| METEOR | 27.52 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) |
| MoverScore | 82.49 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) |
| ROUGE_L | 25.64 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) |
- ***Metric (Question & Answer Generation, Reference Answer)***: Each question is generated from *the gold answer*. [raw metric file](https://huggingface.co/lmqg/mt5-small-koquad-qg/raw/main/eval/metric.first.answer.paragraph.questions_answers.lmqg_qg_koquad.default.json)
| | Score | Type | Dataset |
|:--------------------------------|--------:|:--------|:-----------------------------------------------------------------|
| BERTScore | 87.21 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) |
| Bleu_1 | 41.86 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) |
| Bleu_2 | 30.67 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) |
| Bleu_3 | 18.85 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) |
| Bleu_4 | 10.86 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) |
| METEOR | 36.66 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) |
| MoverScore | 84.46 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) |
| QAAlignedF1Score (BERTScore) | 87.52 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) |
| QAAlignedF1Score (MoverScore) | 85.15 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) |
| QAAlignedPrecision (BERTScore) | 87.57 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) |
| QAAlignedPrecision (MoverScore) | 85.23 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) |
| QAAlignedRecall (BERTScore) | 87.49 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) |
| QAAlignedRecall (MoverScore) | 85.09 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) |
| ROUGE_L | 46.66 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) |
## Training hyperparameters
The following hyperparameters were used during fine-tuning:
- dataset_path: lmqg/qg_koquad
- dataset_name: default
- input_types: ['paragraph_answer']
- output_types: ['question']
- prefix_types: None
- model: google/mt5-small
- max_length: 512
- max_length_output: 32
- epoch: 7
- batch: 16
- lr: 0.001
- fp16: False
- random_seed: 1
- gradient_accumulation_steps: 4
- label_smoothing: 0.15
The full configuration can be found at [fine-tuning config file](https://huggingface.co/lmqg/mt5-small-koquad-qg/raw/main/trainer_config.json).
## Citation
```
@inproceedings{ushio-etal-2022-generative,
title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration",
author = "Ushio, Asahi and
Alva-Manchego, Fernando and
Camacho-Collados, Jose",
booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
month = dec,
year = "2022",
address = "Abu Dhabi, U.A.E.",
publisher = "Association for Computational Linguistics",
}
```
|