File size: 11,915 Bytes
158c81d 6cf2a6e 158c81d 6cf2a6e 158c81d 6cf2a6e 158c81d 6cf2a6e e85afd8 158c81d 6cf2a6e 158c81d c89fb79 158c81d ec81a6a 158c81d ec81a6a 158c81d ec81a6a 6cf2a6e ec81a6a 6cf2a6e ec81a6a 6cf2a6e 158c81d ec81a6a 158c81d ec81a6a 6cf2a6e ec81a6a 6cf2a6e ec81a6a 6cf2a6e c89fb79 158c81d 6cf2a6e 158c81d 6cf2a6e 158c81d 6cf2a6e 158c81d 6cf2a6e 976d33f 6cf2a6e 976d33f 158c81d e85afd8 158c81d 6cf2a6e 158c81d ec81a6a c89fb79 ec81a6a c89fb79 ec81a6a c89fb79 ec81a6a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 |
---
license: cc-by-4.0
metrics:
- bleu4
- meteor
- rouge-l
- bertscore
- moverscore
language: it
datasets:
- lmqg/qg_itquad
pipeline_tag: text2text-generation
tags:
- question generation
- answer extraction
widget:
- text: "generate question: <hl> Dopo il 1971 <hl> , l' OPEC ha tardato ad adeguare i prezzi per riflettere tale deprezzamento."
example_title: "Question Generation Example 1"
- text: "generate question: L' individuazione del petrolio e lo sviluppo di nuovi giacimenti richiedeva in genere <hl> da cinque a dieci anni <hl> prima di una produzione significativa."
example_title: "Question Generation Example 2"
- text: "generate question: il <hl> Giappone <hl> è stato il paese più dipendente dal petrolio arabo."
example_title: "Question Generation Example 3"
- text: "extract answers: <hl> Il 6 ottobre 1973 , la Siria e l' Egitto, con il sostegno di altre nazioni arabe, lanciarono un attacco a sorpresa su Israele, su Yom Kippur. <hl> Questo rinnovo delle ostilità nel conflitto arabo-israeliano ha liberato la pressione economica sottostante sui prezzi del petrolio. All' epoca, l' Iran era il secondo esportatore mondiale di petrolio e un vicino alleato degli Stati Uniti. Settimane più tardi, lo scià d' Iran ha detto in un' intervista: Naturalmente[il prezzo del petrolio] sta andando a salire Certamente! E come! Avete[Paesi occidentali] aumentato il prezzo del grano che ci vendete del 300 per cento, e lo stesso per zucchero e cemento."
example_title: "Answer Extraction Example 1"
- text: "extract answers: <hl> Furono introdotti autocarri compatti, come la Toyota Hilux e il Datsun Truck, seguiti dal camion Mazda (venduto come il Ford Courier), e l' Isuzu costruito Chevrolet LUV. <hl> Mitsubishi rebranded il suo Forte come Dodge D-50 pochi anni dopo la crisi petrolifera. Mazda, Mitsubishi e Isuzu avevano partnership congiunte rispettivamente con Ford, Chrysler e GM. In seguito i produttori americani introdussero le loro sostituzioni nazionali (Ford Ranger, Dodge Dakota e la Chevrolet S10/GMC S-15), ponendo fine alla loro politica di importazione vincolata."
example_title: "Answer Extraction Example 2"
model-index:
- name: lmqg/mt5-small-itquad-qg-ae
results:
- task:
name: Text2text Generation
type: text2text-generation
dataset:
name: lmqg/qg_itquad
type: default
args: default
metrics:
- name: BLEU4 (Question Generation)
type: bleu4_question_generation
value: 7.25
- name: ROUGE-L (Question Generation)
type: rouge_l_question_generation
value: 21.84
- name: METEOR (Question Generation)
type: meteor_question_generation
value: 17.5
- name: BERTScore (Question Generation)
type: bertscore_question_generation
value: 80.61
- name: MoverScore (Question Generation)
type: moverscore_question_generation
value: 56.63
- name: QAAlignedF1Score-BERTScore (Question & Answer Generation)
type: qa_aligned_f1_score_bertscore_question_answer_generation
value: 81.81
- name: QAAlignedRecall-BERTScore (Question & Answer Generation)
type: qa_aligned_recall_bertscore_question_answer_generation
value: 82.51
- name: QAAlignedPrecision-BERTScore (Question & Answer Generation)
type: qa_aligned_precision_bertscore_question_answer_generation
value: 81.17
- name: QAAlignedF1Score-MoverScore (Question & Answer Generation)
type: qa_aligned_f1_score_moverscore_question_answer_generation
value: 56.02
- name: QAAlignedRecall-MoverScore (Question & Answer Generation)
type: qa_aligned_recall_moverscore_question_answer_generation
value: 56.32
- name: QAAlignedPrecision-MoverScore (Question & Answer Generation)
type: qa_aligned_precision_moverscore_question_answer_generation
value: 55.76
- name: BLEU4 (Answer Extraction)
type: bleu4_answer_extraction
value: 26.01
- name: ROUGE-L (Answer Extraction)
type: rouge_l_answer_extraction
value: 45.15
- name: METEOR (Answer Extraction)
type: meteor_answer_extraction
value: 42.68
- name: BERTScore (Answer Extraction)
type: bertscore_answer_extraction
value: 90.24
- name: MoverScore (Answer Extraction)
type: moverscore_answer_extraction
value: 81.17
- name: AnswerF1Score (Answer Extraction)
type: answer_f1_score__answer_extraction
value: 72.09
- name: AnswerExactMatch (Answer Extraction)
type: answer_exact_match_answer_extraction
value: 57.85
---
# Model Card of `lmqg/mt5-small-itquad-qg-ae`
This model is fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) for question generation and answer extraction jointly on the [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) (dataset_name: default) via [`lmqg`](https://github.com/asahi417/lm-question-generation).
### Overview
- **Language model:** [google/mt5-small](https://huggingface.co/google/mt5-small)
- **Language:** it
- **Training data:** [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) (default)
- **Online Demo:** [https://autoqg.net/](https://autoqg.net/)
- **Repository:** [https://github.com/asahi417/lm-question-generation](https://github.com/asahi417/lm-question-generation)
- **Paper:** [https://arxiv.org/abs/2210.03992](https://arxiv.org/abs/2210.03992)
### Usage
- With [`lmqg`](https://github.com/asahi417/lm-question-generation#lmqg-language-model-for-question-generation-)
```python
from lmqg import TransformersQG
# initialize model
model = TransformersQG(language="it", model="lmqg/mt5-small-itquad-qg-ae")
# model prediction
question_answer_pairs = model.generate_qa("Dopo il 1971 , l' OPEC ha tardato ad adeguare i prezzi per riflettere tale deprezzamento.")
```
- With `transformers`
```python
from transformers import pipeline
pipe = pipeline("text2text-generation", "lmqg/mt5-small-itquad-qg-ae")
# answer extraction
answer = pipe("generate question: <hl> Dopo il 1971 <hl> , l' OPEC ha tardato ad adeguare i prezzi per riflettere tale deprezzamento.")
# question generation
question = pipe("extract answers: <hl> Il 6 ottobre 1973 , la Siria e l' Egitto, con il sostegno di altre nazioni arabe, lanciarono un attacco a sorpresa su Israele, su Yom Kippur. <hl> Questo rinnovo delle ostilità nel conflitto arabo-israeliano ha liberato la pressione economica sottostante sui prezzi del petrolio. All' epoca, l' Iran era il secondo esportatore mondiale di petrolio e un vicino alleato degli Stati Uniti. Settimane più tardi, lo scià d' Iran ha detto in un' intervista: Naturalmente[il prezzo del petrolio] sta andando a salire Certamente! E come! Avete[Paesi occidentali] aumentato il prezzo del grano che ci vendete del 300 per cento, e lo stesso per zucchero e cemento.")
```
## Evaluation
- ***Metric (Question Generation)***: [raw metric file](https://huggingface.co/lmqg/mt5-small-itquad-qg-ae/raw/main/eval/metric.first.sentence.paragraph_answer.question.lmqg_qg_itquad.default.json)
| | Score | Type | Dataset |
|:-----------|--------:|:--------|:-----------------------------------------------------------------|
| BERTScore | 80.61 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) |
| Bleu_1 | 22.53 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) |
| Bleu_2 | 14.75 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) |
| Bleu_3 | 10.19 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) |
| Bleu_4 | 7.25 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) |
| METEOR | 17.5 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) |
| MoverScore | 56.63 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) |
| ROUGE_L | 21.84 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) |
- ***Metric (Question & Answer Generation)***: [raw metric file](https://huggingface.co/lmqg/mt5-small-itquad-qg-ae/raw/main/eval/metric.first.answer.paragraph.questions_answers.lmqg_qg_itquad.default.json)
| | Score | Type | Dataset |
|:--------------------------------|--------:|:--------|:-----------------------------------------------------------------|
| QAAlignedF1Score (BERTScore) | 81.81 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) |
| QAAlignedF1Score (MoverScore) | 56.02 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) |
| QAAlignedPrecision (BERTScore) | 81.17 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) |
| QAAlignedPrecision (MoverScore) | 55.76 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) |
| QAAlignedRecall (BERTScore) | 82.51 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) |
| QAAlignedRecall (MoverScore) | 56.32 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) |
- ***Metric (Answer Extraction)***: [raw metric file](https://huggingface.co/lmqg/mt5-small-itquad-qg-ae/raw/main/eval/metric.first.answer.paragraph_sentence.answer.lmqg_qg_itquad.default.json)
| | Score | Type | Dataset |
|:-----------------|--------:|:--------|:-----------------------------------------------------------------|
| AnswerExactMatch | 57.85 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) |
| AnswerF1Score | 72.09 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) |
| BERTScore | 90.24 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) |
| Bleu_1 | 39.33 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) |
| Bleu_2 | 33.64 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) |
| Bleu_3 | 29.59 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) |
| Bleu_4 | 26.01 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) |
| METEOR | 42.68 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) |
| MoverScore | 81.17 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) |
| ROUGE_L | 45.15 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) |
## Training hyperparameters
The following hyperparameters were used during fine-tuning:
- dataset_path: lmqg/qg_itquad
- dataset_name: default
- input_types: ['paragraph_answer', 'paragraph_sentence']
- output_types: ['question', 'answer']
- prefix_types: ['qg', 'ae']
- model: google/mt5-small
- max_length: 512
- max_length_output: 32
- epoch: 13
- batch: 16
- lr: 0.001
- fp16: False
- random_seed: 1
- gradient_accumulation_steps: 4
- label_smoothing: 0.15
The full configuration can be found at [fine-tuning config file](https://huggingface.co/lmqg/mt5-small-itquad-qg-ae/raw/main/trainer_config.json).
## Citation
```
@inproceedings{ushio-etal-2022-generative,
title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration",
author = "Ushio, Asahi and
Alva-Manchego, Fernando and
Camacho-Collados, Jose",
booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
month = dec,
year = "2022",
address = "Abu Dhabi, U.A.E.",
publisher = "Association for Computational Linguistics",
}
```
|