mt5-small-esquad-qg / README.md
asahi417's picture
model update
54f7a3a
|
raw
history blame
7.54 kB
metadata
license: cc-by-4.0
metrics:
  - bleu4
  - meteor
  - rouge-l
  - bertscore
  - moverscore
language: es
datasets:
  - lmqg/qg_esquad
pipeline_tag: text2text-generation
tags:
  - question generation
widget:
  - text: del <hl> Ministerio de Desarrollo Urbano <hl> , Gobierno de la India.
    example_title: Question Generation Example 1
  - text: a <hl> noviembre <hl> , que es también la estación lluviosa.
    example_title: Question Generation Example 2
  - text: >-
      como <hl> el gobierno de Abbott <hl> que asumió el cargo el 18 de
      septiembre de 2013.
    example_title: Question Generation Example 3
model-index:
  - name: lmqg/mt5-small-esquad-qg
    results:
      - task:
          name: Text2text Generation
          type: text2text-generation
        dataset:
          name: lmqg/qg_esquad
          type: default
          args: default
        metrics:
          - name: BLEU4 (Question Generation)
            type: bleu4_question_generation
            value: 9.61
          - name: ROUGE-L (Question Generation)
            type: rouge_l_question_generation
            value: 24.62
          - name: METEOR (Question Generation)
            type: meteor_question_generation
            value: 22.71
          - name: BERTScore (Question Generation)
            type: bertscore_question_generation
            value: 84.07
          - name: MoverScore (Question Generation)
            type: moverscore_question_generation
            value: 59.06
          - name: >-
              QAAlignedF1Score-BERTScore (Question & Answer Generation) [Gold
              Answer]
            type: >-
              qa_aligned_f1_score_bertscore_question_answer_generation_gold_answer
            value: 89.43
          - name: >-
              QAAlignedRecall-BERTScore (Question & Answer Generation) [Gold
              Answer]
            type: qa_aligned_recall_bertscore_question_answer_generation_gold_answer
            value: 89.41
          - name: >-
              QAAlignedPrecision-BERTScore (Question & Answer Generation) [Gold
              Answer]
            type: >-
              qa_aligned_precision_bertscore_question_answer_generation_gold_answer
            value: 89.44
          - name: >-
              QAAlignedF1Score-MoverScore (Question & Answer Generation) [Gold
              Answer]
            type: >-
              qa_aligned_f1_score_moverscore_question_answer_generation_gold_answer
            value: 63.73
          - name: >-
              QAAlignedRecall-MoverScore (Question & Answer Generation) [Gold
              Answer]
            type: >-
              qa_aligned_recall_moverscore_question_answer_generation_gold_answer
            value: 63.72
          - name: >-
              QAAlignedPrecision-MoverScore (Question & Answer Generation) [Gold
              Answer]
            type: >-
              qa_aligned_precision_moverscore_question_answer_generation_gold_answer
            value: 63.75

Model Card of lmqg/mt5-small-esquad-qg

This model is fine-tuned version of google/mt5-small for question generation task on the lmqg/qg_esquad (dataset_name: default) via lmqg.

Overview

Usage

from lmqg import TransformersQG

# initialize model
model = TransformersQG(language="es", model="lmqg/mt5-small-esquad-qg")

# model prediction
questions = model.generate_q(list_context="a noviembre , que es también la estación lluviosa.", list_answer="noviembre")
  • With transformers
from transformers import pipeline

pipe = pipeline("text2text-generation", "lmqg/mt5-small-esquad-qg")
output = pipe("del <hl> Ministerio de Desarrollo Urbano <hl> , Gobierno de la India.")

Evaluation

Score Type Dataset
BERTScore 84.07 default lmqg/qg_esquad
Bleu_1 26.03 default lmqg/qg_esquad
Bleu_2 17.75 default lmqg/qg_esquad
Bleu_3 12.88 default lmqg/qg_esquad
Bleu_4 9.61 default lmqg/qg_esquad
METEOR 22.71 default lmqg/qg_esquad
MoverScore 59.06 default lmqg/qg_esquad
ROUGE_L 24.62 default lmqg/qg_esquad
  • Metric (Question & Answer Generation): QAG metrics are computed with the gold answer and generated question on it for this model, as the model cannot provide an answer. raw metric file
Score Type Dataset
QAAlignedF1Score (BERTScore) 89.43 default lmqg/qg_esquad
QAAlignedF1Score (MoverScore) 63.73 default lmqg/qg_esquad
QAAlignedPrecision (BERTScore) 89.44 default lmqg/qg_esquad
QAAlignedPrecision (MoverScore) 63.75 default lmqg/qg_esquad
QAAlignedRecall (BERTScore) 89.41 default lmqg/qg_esquad
QAAlignedRecall (MoverScore) 63.72 default lmqg/qg_esquad

Training hyperparameters

The following hyperparameters were used during fine-tuning:

  • dataset_path: lmqg/qg_esquad
  • dataset_name: default
  • input_types: ['paragraph_answer']
  • output_types: ['question']
  • prefix_types: None
  • model: google/mt5-small
  • max_length: 512
  • max_length_output: 32
  • epoch: 16
  • batch: 64
  • lr: 0.0005
  • fp16: False
  • random_seed: 1
  • gradient_accumulation_steps: 1
  • label_smoothing: 0.15

The full configuration can be found at fine-tuning config file.

Citation

@inproceedings{ushio-etal-2022-generative,
    title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration",
    author = "Ushio, Asahi  and
        Alva-Manchego, Fernando  and
        Camacho-Collados, Jose",
    booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
    month = dec,
    year = "2022",
    address = "Abu Dhabi, U.A.E.",
    publisher = "Association for Computational Linguistics",
}