File size: 7,060 Bytes
76a7591 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 |
---
license: cc-by-4.0
metrics:
- bleu4
- meteor
- rouge-l
- bertscore
- moverscore
language: de
datasets:
- lmqg/qag_dequad
pipeline_tag: text2text-generation
tags:
- questions and answers generation
widget:
- text: "Empfangs- und Sendeantenne sollen in ihrer Polarisation übereinstimmen, andernfalls wird die Signalübertragung stark gedämpft. "
example_title: "Questions & Answers Generation Example 1"
model-index:
- name: lmqg/mt5-small-dequad-qag
results:
- task:
name: Text2text Generation
type: text2text-generation
dataset:
name: lmqg/qag_dequad
type: default
args: default
metrics:
- name: BLEU4 (Question & Answer Generation)
type: bleu4_question_answer_generation
value: 0.0
- name: ROUGE-L (Question & Answer Generation)
type: rouge_l_question_answer_generation
value: 2.57
- name: METEOR (Question & Answer Generation)
type: meteor_question_answer_generation
value: 1.49
- name: BERTScore (Question & Answer Generation)
type: bertscore_question_answer_generation
value: 61.18
- name: MoverScore (Question & Answer Generation)
type: moverscore_question_answer_generation
value: 46.62
- name: QAAlignedF1Score-BERTScore (Question & Answer Generation)
type: qa_aligned_f1_score_bertscore_question_answer_generation
value: 0.0
- name: QAAlignedRecall-BERTScore (Question & Answer Generation)
type: qa_aligned_recall_bertscore_question_answer_generation
value: 0.0
- name: QAAlignedPrecision-BERTScore (Question & Answer Generation)
type: qa_aligned_precision_bertscore_question_answer_generation
value: 0.0
- name: QAAlignedF1Score-MoverScore (Question & Answer Generation)
type: qa_aligned_f1_score_moverscore_question_answer_generation
value: 0.0
- name: QAAlignedRecall-MoverScore (Question & Answer Generation)
type: qa_aligned_recall_moverscore_question_answer_generation
value: 0.0
- name: QAAlignedPrecision-MoverScore (Question & Answer Generation)
type: qa_aligned_precision_moverscore_question_answer_generation
value: 0.0
---
# Model Card of `lmqg/mt5-small-dequad-qag`
This model is fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) for question & answer pair generation task on the [lmqg/qag_dequad](https://huggingface.co/datasets/lmqg/qag_dequad) (dataset_name: default) via [`lmqg`](https://github.com/asahi417/lm-question-generation).
### Overview
- **Language model:** [google/mt5-small](https://huggingface.co/google/mt5-small)
- **Language:** de
- **Training data:** [lmqg/qag_dequad](https://huggingface.co/datasets/lmqg/qag_dequad) (default)
- **Online Demo:** [https://autoqg.net/](https://autoqg.net/)
- **Repository:** [https://github.com/asahi417/lm-question-generation](https://github.com/asahi417/lm-question-generation)
- **Paper:** [https://arxiv.org/abs/2210.03992](https://arxiv.org/abs/2210.03992)
### Usage
- With [`lmqg`](https://github.com/asahi417/lm-question-generation#lmqg-language-model-for-question-generation-)
```python
from lmqg import TransformersQG
# initialize model
model = TransformersQG(language="de", model="lmqg/mt5-small-dequad-qag")
# model prediction
question_answer_pairs = model.generate_qa("das erste weltweit errichtete Hermann Brehmer 1855 im niederschlesischen ''Görbersdorf'' (heute Sokołowsko, Polen).")
```
- With `transformers`
```python
from transformers import pipeline
pipe = pipeline("text2text-generation", "lmqg/mt5-small-dequad-qag")
output = pipe("Empfangs- und Sendeantenne sollen in ihrer Polarisation übereinstimmen, andernfalls wird die Signalübertragung stark gedämpft. ")
```
## Evaluation
- ***Metric (Question & Answer Generation)***: [raw metric file](https://huggingface.co/lmqg/mt5-small-dequad-qag/raw/main/eval/metric.first.answer.paragraph.questions_answers.lmqg_qag_dequad.default.json)
| | Score | Type | Dataset |
|:--------------------------------|--------:|:--------|:-------------------------------------------------------------------|
| BERTScore | 61.18 | default | [lmqg/qag_dequad](https://huggingface.co/datasets/lmqg/qag_dequad) |
| Bleu_1 | 0.03 | default | [lmqg/qag_dequad](https://huggingface.co/datasets/lmqg/qag_dequad) |
| Bleu_2 | 0.01 | default | [lmqg/qag_dequad](https://huggingface.co/datasets/lmqg/qag_dequad) |
| Bleu_3 | 0 | default | [lmqg/qag_dequad](https://huggingface.co/datasets/lmqg/qag_dequad) |
| Bleu_4 | 0 | default | [lmqg/qag_dequad](https://huggingface.co/datasets/lmqg/qag_dequad) |
| METEOR | 1.49 | default | [lmqg/qag_dequad](https://huggingface.co/datasets/lmqg/qag_dequad) |
| MoverScore | 46.62 | default | [lmqg/qag_dequad](https://huggingface.co/datasets/lmqg/qag_dequad) |
| QAAlignedF1Score (BERTScore) | 0 | default | [lmqg/qag_dequad](https://huggingface.co/datasets/lmqg/qag_dequad) |
| QAAlignedF1Score (MoverScore) | 0 | default | [lmqg/qag_dequad](https://huggingface.co/datasets/lmqg/qag_dequad) |
| QAAlignedPrecision (BERTScore) | 0 | default | [lmqg/qag_dequad](https://huggingface.co/datasets/lmqg/qag_dequad) |
| QAAlignedPrecision (MoverScore) | 0 | default | [lmqg/qag_dequad](https://huggingface.co/datasets/lmqg/qag_dequad) |
| QAAlignedRecall (BERTScore) | 0 | default | [lmqg/qag_dequad](https://huggingface.co/datasets/lmqg/qag_dequad) |
| QAAlignedRecall (MoverScore) | 0 | default | [lmqg/qag_dequad](https://huggingface.co/datasets/lmqg/qag_dequad) |
| ROUGE_L | 2.57 | default | [lmqg/qag_dequad](https://huggingface.co/datasets/lmqg/qag_dequad) |
## Training hyperparameters
The following hyperparameters were used during fine-tuning:
- dataset_path: lmqg/qag_dequad
- dataset_name: default
- input_types: ['paragraph']
- output_types: ['questions_answers']
- prefix_types: None
- model: google/mt5-small
- max_length: 512
- max_length_output: 256
- epoch: 3
- batch: 8
- lr: 0.0001
- fp16: False
- random_seed: 1
- gradient_accumulation_steps: 16
- label_smoothing: 0.15
The full configuration can be found at [fine-tuning config file](https://huggingface.co/lmqg/mt5-small-dequad-qag/raw/main/trainer_config.json).
## Citation
```
@inproceedings{ushio-etal-2022-generative,
title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration",
author = "Ushio, Asahi and
Alva-Manchego, Fernando and
Camacho-Collados, Jose",
booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
month = dec,
year = "2022",
address = "Abu Dhabi, U.A.E.",
publisher = "Association for Computational Linguistics",
}
```
|