File size: 12,811 Bytes
3c695d3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 |
---
license: cc-by-4.0
metrics:
- bleu4
- meteor
- rouge-l
- bertscore
- moverscore
language: zh
datasets:
- lmqg/qg_zhquad
pipeline_tag: text2text-generation
tags:
- question generation
- answer extraction
widget:
- text: "generate question: 南安普敦的警察服务由汉普郡警察提供。南安普敦行动的主要基地是一座新的八层专用建筑,造价3000万英镑。该建筑位于南路,2011年启用,靠近<hl> 南安普敦中央 <hl>火车站。此前,南安普顿市中心的行动位于市民中心西翼,但由于设施老化,加上计划在旧警察局和地方法院建造一座新博物馆,因此必须搬迁。在Portswood、Banister Park、Hille和Shirley还有其他警察局,在南安普顿中央火车站还有一个英国交通警察局。"
example_title: "Question Generation Example 1"
- text: "generate question: 芝加哥大学的<hl> 1960—61 <hl>集团理论年汇集了Daniel Gorenstein、John G. Thompson和Walter Feit等团体理论家,奠定了一个合作的基础,借助于其他众多数学家的输入,1982中对所有有限的简单群进行了分类。这个项目的规模超过了以往的数学研究,无论是证明的长度还是研究人员的数量。目前正在进行研究,以简化这一分类的证明。如今,群论仍然是一个非常活跃的数学分支,影响着许多其他领域"
example_title: "Question Generation Example 2"
- text: "extract answers: 南安普敦的警察服务由汉普郡警察提供。 南安普敦行动的主要基地是一座新的八层专用建筑,造价3000万英镑。 <hl> 该建筑位于南路,2011年启用,靠近 南安普敦中央 火车站。 <hl> 此前,南安普顿市中心的行动位于市民中心西翼,但由于设施老化,加上计划在旧警察局和地方法院建造一座新博物馆,因此必须搬迁。 在Portswood、Banister Park、Hille和Shirley还有其他警察局,在南安普顿中央火车站还有一个英国交通警察局。"
example_title: "Answer Extraction Example 1"
model-index:
- name: lmqg/mt5-base-zhquad-qg-ae
results:
- task:
name: Text2text Generation
type: text2text-generation
dataset:
name: lmqg/qg_zhquad
type: default
args: default
metrics:
- name: BLEU4 (Question Generation)
type: bleu4_question_generation
value: 14.63
- name: ROUGE-L (Question Generation)
type: rouge_l_question_generation
value: 34.07
- name: METEOR (Question Generation)
type: meteor_question_generation
value: 23.69
- name: BERTScore (Question Generation)
type: bertscore_question_generation
value: 76.82
- name: MoverScore (Question Generation)
type: moverscore_question_generation
value: 57.24
- name: QAAlignedF1Score-BERTScore (Question & Answer Generation (with Gold Answer))
type: qa_aligned_f1_score_bertscore_question_answer_generation_with_gold_answer
value: 78.4
- name: QAAlignedRecall-BERTScore (Question & Answer Generation (with Gold Answer))
type: qa_aligned_recall_bertscore_question_answer_generation_with_gold_answer
value: 81.92
- name: QAAlignedPrecision-BERTScore (Question & Answer Generation (with Gold Answer))
type: qa_aligned_precision_bertscore_question_answer_generation_with_gold_answer
value: 75.27
- name: QAAlignedF1Score-MoverScore (Question & Answer Generation (with Gold Answer))
type: qa_aligned_f1_score_moverscore_question_answer_generation_with_gold_answer
value: 53.55
- name: QAAlignedRecall-MoverScore (Question & Answer Generation (with Gold Answer))
type: qa_aligned_recall_moverscore_question_answer_generation_with_gold_answer
value: 55.82
- name: QAAlignedPrecision-MoverScore (Question & Answer Generation (with Gold Answer))
type: qa_aligned_precision_moverscore_question_answer_generation_with_gold_answer
value: 51.56
- name: BLEU4 (Answer Extraction)
type: bleu4_answer_extraction
value: 82.63
- name: ROUGE-L (Answer Extraction)
type: rouge_l_answer_extraction
value: 95.72
- name: METEOR (Answer Extraction)
type: meteor_answer_extraction
value: 71.18
- name: BERTScore (Answer Extraction)
type: bertscore_answer_extraction
value: 99.76
- name: MoverScore (Answer Extraction)
type: moverscore_answer_extraction
value: 98.8
- name: AnswerF1Score (Answer Extraction)
type: answer_f1_score__answer_extraction
value: 95.15
- name: AnswerExactMatch (Answer Extraction)
type: answer_exact_match_answer_extraction
value: 95.07
---
# Model Card of `lmqg/mt5-base-zhquad-qg-ae`
This model is fine-tuned version of [google/mt5-base](https://huggingface.co/google/mt5-base) for question generation and answer extraction jointly on the [lmqg/qg_zhquad](https://huggingface.co/datasets/lmqg/qg_zhquad) (dataset_name: default) via [`lmqg`](https://github.com/asahi417/lm-question-generation).
### Overview
- **Language model:** [google/mt5-base](https://huggingface.co/google/mt5-base)
- **Language:** zh
- **Training data:** [lmqg/qg_zhquad](https://huggingface.co/datasets/lmqg/qg_zhquad) (default)
- **Online Demo:** [https://autoqg.net/](https://autoqg.net/)
- **Repository:** [https://github.com/asahi417/lm-question-generation](https://github.com/asahi417/lm-question-generation)
- **Paper:** [https://arxiv.org/abs/2210.03992](https://arxiv.org/abs/2210.03992)
### Usage
- With [`lmqg`](https://github.com/asahi417/lm-question-generation#lmqg-language-model-for-question-generation-)
```python
from lmqg import TransformersQG
# initialize model
model = TransformersQG(language="zh", model="lmqg/mt5-base-zhquad-qg-ae")
# model prediction
question_answer_pairs = model.generate_qa("南安普敦的警察服务由汉普郡警察提供。南安普敦行动的主要基地是一座新的八层专用建筑,造价3000万英镑。该建筑位于南路,2011年启用,靠近南安普敦中央火车站。此前,南安普顿市中心的行动位于市民中心西翼,但由于设施老化,加上计划在旧警察局和地方法院建造一座新博物馆,因此必须搬迁。在Portswood、Banister Park、Hille和Shirley还有其他警察局,在南安普顿中央火车站还有一个英国交通警察局。")
```
- With `transformers`
```python
from transformers import pipeline
pipe = pipeline("text2text-generation", "lmqg/mt5-base-zhquad-qg-ae")
# answer extraction
answer = pipe("generate question: 南安普敦的警察服务由汉普郡警察提供。南安普敦行动的主要基地是一座新的八层专用建筑,造价3000万英镑。该建筑位于南路,2011年启用,靠近<hl> 南安普敦中央 <hl>火车站。此前,南安普顿市中心的行动位于市民中心西翼,但由于设施老化,加上计划在旧警察局和地方法院建造一座新博物馆,因此必须搬迁。在Portswood、Banister Park、Hille和Shirley还有其他警察局,在南安普顿中央火车站还有一个英国交通警察局。")
# question generation
question = pipe("extract answers: 南安普敦的警察服务由汉普郡警察提供。 南安普敦行动的主要基地是一座新的八层专用建筑,造价3000万英镑。 <hl> 该建筑位于南路,2011年启用,靠近 南安普敦中央 火车站。 <hl> 此前,南安普顿市中心的行动位于市民中心西翼,但由于设施老化,加上计划在旧警察局和地方法院建造一座新博物馆,因此必须搬迁。 在Portswood、Banister Park、Hille和Shirley还有其他警察局,在南安普顿中央火车站还有一个英国交通警察局。")
```
## Evaluation
- ***Metric (Question Generation)***: [raw metric file](https://huggingface.co/lmqg/mt5-base-zhquad-qg-ae/raw/main/eval/metric.first.sentence.paragraph_answer.question.lmqg_qg_zhquad.default.json)
| | Score | Type | Dataset |
|:-----------|--------:|:--------|:-----------------------------------------------------------------|
| BERTScore | 76.82 | default | [lmqg/qg_zhquad](https://huggingface.co/datasets/lmqg/qg_zhquad) |
| Bleu_1 | 36.9 | default | [lmqg/qg_zhquad](https://huggingface.co/datasets/lmqg/qg_zhquad) |
| Bleu_2 | 25.74 | default | [lmqg/qg_zhquad](https://huggingface.co/datasets/lmqg/qg_zhquad) |
| Bleu_3 | 19.13 | default | [lmqg/qg_zhquad](https://huggingface.co/datasets/lmqg/qg_zhquad) |
| Bleu_4 | 14.63 | default | [lmqg/qg_zhquad](https://huggingface.co/datasets/lmqg/qg_zhquad) |
| METEOR | 23.69 | default | [lmqg/qg_zhquad](https://huggingface.co/datasets/lmqg/qg_zhquad) |
| MoverScore | 57.24 | default | [lmqg/qg_zhquad](https://huggingface.co/datasets/lmqg/qg_zhquad) |
| ROUGE_L | 34.07 | default | [lmqg/qg_zhquad](https://huggingface.co/datasets/lmqg/qg_zhquad) |
- ***Metric (Question & Answer Generation)***: [raw metric file](https://huggingface.co/lmqg/mt5-base-zhquad-qg-ae/raw/main/eval/metric.first.answer.paragraph.questions_answers.lmqg_qg_zhquad.default.json)
| | Score | Type | Dataset |
|:--------------------------------|--------:|:--------|:-----------------------------------------------------------------|
| QAAlignedF1Score (BERTScore) | 78.4 | default | [lmqg/qg_zhquad](https://huggingface.co/datasets/lmqg/qg_zhquad) |
| QAAlignedF1Score (MoverScore) | 53.55 | default | [lmqg/qg_zhquad](https://huggingface.co/datasets/lmqg/qg_zhquad) |
| QAAlignedPrecision (BERTScore) | 75.27 | default | [lmqg/qg_zhquad](https://huggingface.co/datasets/lmqg/qg_zhquad) |
| QAAlignedPrecision (MoverScore) | 51.56 | default | [lmqg/qg_zhquad](https://huggingface.co/datasets/lmqg/qg_zhquad) |
| QAAlignedRecall (BERTScore) | 81.92 | default | [lmqg/qg_zhquad](https://huggingface.co/datasets/lmqg/qg_zhquad) |
| QAAlignedRecall (MoverScore) | 55.82 | default | [lmqg/qg_zhquad](https://huggingface.co/datasets/lmqg/qg_zhquad) |
- ***Metric (Answer Extraction)***: [raw metric file](https://huggingface.co/lmqg/mt5-base-zhquad-qg-ae/raw/main/eval/metric.first.answer.paragraph_sentence.answer.lmqg_qg_zhquad.default.json)
| | Score | Type | Dataset |
|:-----------------|--------:|:--------|:-----------------------------------------------------------------|
| AnswerExactMatch | 95.07 | default | [lmqg/qg_zhquad](https://huggingface.co/datasets/lmqg/qg_zhquad) |
| AnswerF1Score | 95.15 | default | [lmqg/qg_zhquad](https://huggingface.co/datasets/lmqg/qg_zhquad) |
| BERTScore | 99.76 | default | [lmqg/qg_zhquad](https://huggingface.co/datasets/lmqg/qg_zhquad) |
| Bleu_1 | 92.37 | default | [lmqg/qg_zhquad](https://huggingface.co/datasets/lmqg/qg_zhquad) |
| Bleu_2 | 89.37 | default | [lmqg/qg_zhquad](https://huggingface.co/datasets/lmqg/qg_zhquad) |
| Bleu_3 | 86.14 | default | [lmqg/qg_zhquad](https://huggingface.co/datasets/lmqg/qg_zhquad) |
| Bleu_4 | 82.63 | default | [lmqg/qg_zhquad](https://huggingface.co/datasets/lmqg/qg_zhquad) |
| METEOR | 71.18 | default | [lmqg/qg_zhquad](https://huggingface.co/datasets/lmqg/qg_zhquad) |
| MoverScore | 98.8 | default | [lmqg/qg_zhquad](https://huggingface.co/datasets/lmqg/qg_zhquad) |
| ROUGE_L | 95.72 | default | [lmqg/qg_zhquad](https://huggingface.co/datasets/lmqg/qg_zhquad) |
## Training hyperparameters
The following hyperparameters were used during fine-tuning:
- dataset_path: lmqg/qg_zhquad
- dataset_name: default
- input_types: ['paragraph_answer', 'paragraph_sentence']
- output_types: ['question', 'answer']
- prefix_types: ['qg', 'ae']
- model: google/mt5-base
- max_length: 512
- max_length_output: 32
- epoch: 5
- batch: 32
- lr: 0.0005
- fp16: False
- random_seed: 1
- gradient_accumulation_steps: 2
- label_smoothing: 0.15
The full configuration can be found at [fine-tuning config file](https://huggingface.co/lmqg/mt5-base-zhquad-qg-ae/raw/main/trainer_config.json).
## Citation
```
@inproceedings{ushio-etal-2022-generative,
title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration",
author = "Ushio, Asahi and
Alva-Manchego, Fernando and
Camacho-Collados, Jose",
booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
month = dec,
year = "2022",
address = "Abu Dhabi, U.A.E.",
publisher = "Association for Computational Linguistics",
}
```
|