File size: 12,811 Bytes
3c695d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212

---
license: cc-by-4.0
metrics:
- bleu4
- meteor
- rouge-l
- bertscore
- moverscore
language: zh
datasets:
- lmqg/qg_zhquad
pipeline_tag: text2text-generation
tags:
- question generation
- answer extraction
widget:
- text: "generate question: 南安普敦的警察服务由汉普郡警察提供。南安普敦行动的主要基地是一座新的八层专用建筑,造价3000万英镑。该建筑位于南路,2011年启用,靠近<hl> 南安普敦中央 <hl>火车站。此前,南安普顿市中心的行动位于市民中心西翼,但由于设施老化,加上计划在旧警察局和地方法院建造一座新博物馆,因此必须搬迁。在Portswood、Banister Park、Hille和Shirley还有其他警察局,在南安普顿中央火车站还有一个英国交通警察局。"
  example_title: "Question Generation Example 1" 
- text: "generate question: 芝加哥大学的<hl> 1960—61 <hl>集团理论年汇集了Daniel Gorenstein、John G. Thompson和Walter Feit等团体理论家,奠定了一个合作的基础,借助于其他众多数学家的输入,1982中对所有有限的简单群进行了分类。这个项目的规模超过了以往的数学研究,无论是证明的长度还是研究人员的数量。目前正在进行研究,以简化这一分类的证明。如今,群论仍然是一个非常活跃的数学分支,影响着许多其他领域"
  example_title: "Question Generation Example 2" 
- text: "extract answers: 南安普敦的警察服务由汉普郡警察提供。 南安普敦行动的主要基地是一座新的八层专用建筑,造价3000万英镑。 <hl> 该建筑位于南路,2011年启用,靠近 南安普敦中央 火车站。 <hl> 此前,南安普顿市中心的行动位于市民中心西翼,但由于设施老化,加上计划在旧警察局和地方法院建造一座新博物馆,因此必须搬迁。 在Portswood、Banister Park、Hille和Shirley还有其他警察局,在南安普顿中央火车站还有一个英国交通警察局。"
  example_title: "Answer Extraction Example 1" 
model-index:
- name: lmqg/mt5-base-zhquad-qg-ae
  results:
  - task:
      name: Text2text Generation
      type: text2text-generation
    dataset:
      name: lmqg/qg_zhquad
      type: default
      args: default
    metrics:
    - name: BLEU4 (Question Generation)
      type: bleu4_question_generation
      value: 14.63
    - name: ROUGE-L (Question Generation)
      type: rouge_l_question_generation
      value: 34.07
    - name: METEOR (Question Generation)
      type: meteor_question_generation
      value: 23.69
    - name: BERTScore (Question Generation)
      type: bertscore_question_generation
      value: 76.82
    - name: MoverScore (Question Generation)
      type: moverscore_question_generation
      value: 57.24
    - name: QAAlignedF1Score-BERTScore (Question & Answer Generation (with Gold Answer))
      type: qa_aligned_f1_score_bertscore_question_answer_generation_with_gold_answer
      value: 78.4
    - name: QAAlignedRecall-BERTScore (Question & Answer Generation (with Gold Answer))
      type: qa_aligned_recall_bertscore_question_answer_generation_with_gold_answer
      value: 81.92
    - name: QAAlignedPrecision-BERTScore (Question & Answer Generation (with Gold Answer))
      type: qa_aligned_precision_bertscore_question_answer_generation_with_gold_answer
      value: 75.27
    - name: QAAlignedF1Score-MoverScore (Question & Answer Generation (with Gold Answer))
      type: qa_aligned_f1_score_moverscore_question_answer_generation_with_gold_answer
      value: 53.55
    - name: QAAlignedRecall-MoverScore (Question & Answer Generation (with Gold Answer))
      type: qa_aligned_recall_moverscore_question_answer_generation_with_gold_answer
      value: 55.82
    - name: QAAlignedPrecision-MoverScore (Question & Answer Generation (with Gold Answer))
      type: qa_aligned_precision_moverscore_question_answer_generation_with_gold_answer
      value: 51.56
    - name: BLEU4 (Answer Extraction)
      type: bleu4_answer_extraction
      value: 82.63
    - name: ROUGE-L (Answer Extraction)
      type: rouge_l_answer_extraction
      value: 95.72
    - name: METEOR (Answer Extraction)
      type: meteor_answer_extraction
      value: 71.18
    - name: BERTScore (Answer Extraction)
      type: bertscore_answer_extraction
      value: 99.76
    - name: MoverScore (Answer Extraction)
      type: moverscore_answer_extraction
      value: 98.8
    - name: AnswerF1Score (Answer Extraction)
      type: answer_f1_score__answer_extraction
      value: 95.15
    - name: AnswerExactMatch (Answer Extraction)
      type: answer_exact_match_answer_extraction
      value: 95.07
---

# Model Card of `lmqg/mt5-base-zhquad-qg-ae`
This model is fine-tuned version of [google/mt5-base](https://huggingface.co/google/mt5-base) for question generation and answer extraction jointly on the [lmqg/qg_zhquad](https://huggingface.co/datasets/lmqg/qg_zhquad) (dataset_name: default) via [`lmqg`](https://github.com/asahi417/lm-question-generation).


### Overview
- **Language model:** [google/mt5-base](https://huggingface.co/google/mt5-base)   
- **Language:** zh  
- **Training data:** [lmqg/qg_zhquad](https://huggingface.co/datasets/lmqg/qg_zhquad) (default)
- **Online Demo:** [https://autoqg.net/](https://autoqg.net/)
- **Repository:** [https://github.com/asahi417/lm-question-generation](https://github.com/asahi417/lm-question-generation)
- **Paper:** [https://arxiv.org/abs/2210.03992](https://arxiv.org/abs/2210.03992)

### Usage
- With [`lmqg`](https://github.com/asahi417/lm-question-generation#lmqg-language-model-for-question-generation-)
```python
from lmqg import TransformersQG

# initialize model
model = TransformersQG(language="zh", model="lmqg/mt5-base-zhquad-qg-ae")

# model prediction
question_answer_pairs = model.generate_qa("南安普敦的警察服务由汉普郡警察提供。南安普敦行动的主要基地是一座新的八层专用建筑,造价3000万英镑。该建筑位于南路,2011年启用,靠近南安普敦中央火车站。此前,南安普顿市中心的行动位于市民中心西翼,但由于设施老化,加上计划在旧警察局和地方法院建造一座新博物馆,因此必须搬迁。在Portswood、Banister Park、Hille和Shirley还有其他警察局,在南安普顿中央火车站还有一个英国交通警察局。")

```

- With `transformers`
```python
from transformers import pipeline

pipe = pipeline("text2text-generation", "lmqg/mt5-base-zhquad-qg-ae")

# answer extraction
answer = pipe("generate question: 南安普敦的警察服务由汉普郡警察提供。南安普敦行动的主要基地是一座新的八层专用建筑,造价3000万英镑。该建筑位于南路,2011年启用,靠近<hl> 南安普敦中央 <hl>火车站。此前,南安普顿市中心的行动位于市民中心西翼,但由于设施老化,加上计划在旧警察局和地方法院建造一座新博物馆,因此必须搬迁。在Portswood、Banister Park、Hille和Shirley还有其他警察局,在南安普顿中央火车站还有一个英国交通警察局。")

# question generation
question = pipe("extract answers: 南安普敦的警察服务由汉普郡警察提供。 南安普敦行动的主要基地是一座新的八层专用建筑,造价3000万英镑。 <hl> 该建筑位于南路,2011年启用,靠近 南安普敦中央 火车站。 <hl> 此前,南安普顿市中心的行动位于市民中心西翼,但由于设施老化,加上计划在旧警察局和地方法院建造一座新博物馆,因此必须搬迁。 在Portswood、Banister Park、Hille和Shirley还有其他警察局,在南安普顿中央火车站还有一个英国交通警察局。")

```

## Evaluation


- ***Metric (Question Generation)***: [raw metric file](https://huggingface.co/lmqg/mt5-base-zhquad-qg-ae/raw/main/eval/metric.first.sentence.paragraph_answer.question.lmqg_qg_zhquad.default.json) 

|            |   Score | Type    | Dataset                                                          |
|:-----------|--------:|:--------|:-----------------------------------------------------------------|
| BERTScore  |   76.82 | default | [lmqg/qg_zhquad](https://huggingface.co/datasets/lmqg/qg_zhquad) |
| Bleu_1     |   36.9  | default | [lmqg/qg_zhquad](https://huggingface.co/datasets/lmqg/qg_zhquad) |
| Bleu_2     |   25.74 | default | [lmqg/qg_zhquad](https://huggingface.co/datasets/lmqg/qg_zhquad) |
| Bleu_3     |   19.13 | default | [lmqg/qg_zhquad](https://huggingface.co/datasets/lmqg/qg_zhquad) |
| Bleu_4     |   14.63 | default | [lmqg/qg_zhquad](https://huggingface.co/datasets/lmqg/qg_zhquad) |
| METEOR     |   23.69 | default | [lmqg/qg_zhquad](https://huggingface.co/datasets/lmqg/qg_zhquad) |
| MoverScore |   57.24 | default | [lmqg/qg_zhquad](https://huggingface.co/datasets/lmqg/qg_zhquad) |
| ROUGE_L    |   34.07 | default | [lmqg/qg_zhquad](https://huggingface.co/datasets/lmqg/qg_zhquad) |


- ***Metric (Question & Answer Generation)***:  [raw metric file](https://huggingface.co/lmqg/mt5-base-zhquad-qg-ae/raw/main/eval/metric.first.answer.paragraph.questions_answers.lmqg_qg_zhquad.default.json)

|                                 |   Score | Type    | Dataset                                                          |
|:--------------------------------|--------:|:--------|:-----------------------------------------------------------------|
| QAAlignedF1Score (BERTScore)    |   78.4  | default | [lmqg/qg_zhquad](https://huggingface.co/datasets/lmqg/qg_zhquad) |
| QAAlignedF1Score (MoverScore)   |   53.55 | default | [lmqg/qg_zhquad](https://huggingface.co/datasets/lmqg/qg_zhquad) |
| QAAlignedPrecision (BERTScore)  |   75.27 | default | [lmqg/qg_zhquad](https://huggingface.co/datasets/lmqg/qg_zhquad) |
| QAAlignedPrecision (MoverScore) |   51.56 | default | [lmqg/qg_zhquad](https://huggingface.co/datasets/lmqg/qg_zhquad) |
| QAAlignedRecall (BERTScore)     |   81.92 | default | [lmqg/qg_zhquad](https://huggingface.co/datasets/lmqg/qg_zhquad) |
| QAAlignedRecall (MoverScore)    |   55.82 | default | [lmqg/qg_zhquad](https://huggingface.co/datasets/lmqg/qg_zhquad) |


- ***Metric (Answer Extraction)***: [raw metric file](https://huggingface.co/lmqg/mt5-base-zhquad-qg-ae/raw/main/eval/metric.first.answer.paragraph_sentence.answer.lmqg_qg_zhquad.default.json)

|                  |   Score | Type    | Dataset                                                          |
|:-----------------|--------:|:--------|:-----------------------------------------------------------------|
| AnswerExactMatch |   95.07 | default | [lmqg/qg_zhquad](https://huggingface.co/datasets/lmqg/qg_zhquad) |
| AnswerF1Score    |   95.15 | default | [lmqg/qg_zhquad](https://huggingface.co/datasets/lmqg/qg_zhquad) |
| BERTScore        |   99.76 | default | [lmqg/qg_zhquad](https://huggingface.co/datasets/lmqg/qg_zhquad) |
| Bleu_1           |   92.37 | default | [lmqg/qg_zhquad](https://huggingface.co/datasets/lmqg/qg_zhquad) |
| Bleu_2           |   89.37 | default | [lmqg/qg_zhquad](https://huggingface.co/datasets/lmqg/qg_zhquad) |
| Bleu_3           |   86.14 | default | [lmqg/qg_zhquad](https://huggingface.co/datasets/lmqg/qg_zhquad) |
| Bleu_4           |   82.63 | default | [lmqg/qg_zhquad](https://huggingface.co/datasets/lmqg/qg_zhquad) |
| METEOR           |   71.18 | default | [lmqg/qg_zhquad](https://huggingface.co/datasets/lmqg/qg_zhquad) |
| MoverScore       |   98.8  | default | [lmqg/qg_zhquad](https://huggingface.co/datasets/lmqg/qg_zhquad) |
| ROUGE_L          |   95.72 | default | [lmqg/qg_zhquad](https://huggingface.co/datasets/lmqg/qg_zhquad) |



## Training hyperparameters

The following hyperparameters were used during fine-tuning:
 - dataset_path: lmqg/qg_zhquad
 - dataset_name: default
 - input_types: ['paragraph_answer', 'paragraph_sentence']
 - output_types: ['question', 'answer']
 - prefix_types: ['qg', 'ae']
 - model: google/mt5-base
 - max_length: 512
 - max_length_output: 32
 - epoch: 5
 - batch: 32
 - lr: 0.0005
 - fp16: False
 - random_seed: 1
 - gradient_accumulation_steps: 2
 - label_smoothing: 0.15

The full configuration can be found at [fine-tuning config file](https://huggingface.co/lmqg/mt5-base-zhquad-qg-ae/raw/main/trainer_config.json).

## Citation
```
@inproceedings{ushio-etal-2022-generative,
    title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration",
    author = "Ushio, Asahi  and
        Alva-Manchego, Fernando  and
        Camacho-Collados, Jose",
    booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
    month = dec,
    year = "2022",
    address = "Abu Dhabi, U.A.E.",
    publisher = "Association for Computational Linguistics",
}

```