metadata
license: cc-by-4.0
metrics:
- bleu4
- meteor
- rouge-l
- bertscore
- moverscore
language: es
datasets:
- lmqg/qag_esquad
pipeline_tag: text2text-generation
tags:
- questions and answers generation
widget:
- text: del Ministerio de Desarrollo Urbano , Gobierno de la India.
example_title: Questions & Answers Generation Example 1
model-index:
- name: lmqg/mt5-base-esquad-qag
results:
- task:
name: Text2text Generation
type: text2text-generation
dataset:
name: lmqg/qag_esquad
type: default
args: default
metrics:
- name: QAAlignedF1Score-BERTScore (Question & Answer Generation)
type: qa_aligned_f1_score_bertscore_question_answer_generation
value: 78.96
- name: QAAlignedRecall-BERTScore (Question & Answer Generation)
type: qa_aligned_recall_bertscore_question_answer_generation
value: 79.31
- name: QAAlignedPrecision-BERTScore (Question & Answer Generation)
type: qa_aligned_precision_bertscore_question_answer_generation
value: 78.66
- name: QAAlignedF1Score-MoverScore (Question & Answer Generation)
type: qa_aligned_f1_score_moverscore_question_answer_generation
value: 54.3
- name: QAAlignedRecall-MoverScore (Question & Answer Generation)
type: qa_aligned_recall_moverscore_question_answer_generation
value: 54.42
- name: QAAlignedPrecision-MoverScore (Question & Answer Generation)
type: qa_aligned_precision_moverscore_question_answer_generation
value: 54.21
Model Card of lmqg/mt5-base-esquad-qag
This model is fine-tuned version of google/mt5-base for question & answer pair generation task on the lmqg/qag_esquad (dataset_name: default) via lmqg
.
Overview
- Language model: google/mt5-base
- Language: es
- Training data: lmqg/qag_esquad (default)
- Online Demo: https://autoqg.net/
- Repository: https://github.com/asahi417/lm-question-generation
- Paper: https://arxiv.org/abs/2210.03992
Usage
- With
lmqg
from lmqg import TransformersQG
# initialize model
model = TransformersQG(language="es", model="lmqg/mt5-base-esquad-qag")
# model prediction
question_answer_pairs = model.generate_qa("a noviembre , que es también la estación lluviosa.")
- With
transformers
from transformers import pipeline
pipe = pipeline("text2text-generation", "lmqg/mt5-base-esquad-qag")
output = pipe("del Ministerio de Desarrollo Urbano , Gobierno de la India.")
Evaluation
- Metric (Question & Answer Generation): raw metric file
Score | Type | Dataset | |
---|---|---|---|
QAAlignedF1Score (BERTScore) | 78.96 | default | lmqg/qag_esquad |
QAAlignedF1Score (MoverScore) | 54.3 | default | lmqg/qag_esquad |
QAAlignedPrecision (BERTScore) | 78.66 | default | lmqg/qag_esquad |
QAAlignedPrecision (MoverScore) | 54.21 | default | lmqg/qag_esquad |
QAAlignedRecall (BERTScore) | 79.31 | default | lmqg/qag_esquad |
QAAlignedRecall (MoverScore) | 54.42 | default | lmqg/qag_esquad |
Training hyperparameters
The following hyperparameters were used during fine-tuning:
- dataset_path: lmqg/qag_esquad
- dataset_name: default
- input_types: ['paragraph']
- output_types: ['questions_answers']
- prefix_types: None
- model: google/mt5-base
- max_length: 512
- max_length_output: 256
- epoch: 13
- batch: 2
- lr: 0.0005
- fp16: False
- random_seed: 1
- gradient_accumulation_steps: 32
- label_smoothing: 0.0
The full configuration can be found at fine-tuning config file.
Citation
@inproceedings{ushio-etal-2022-generative,
title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration",
author = "Ushio, Asahi and
Alva-Manchego, Fernando and
Camacho-Collados, Jose",
booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
month = dec,
year = "2022",
address = "Abu Dhabi, U.A.E.",
publisher = "Association for Computational Linguistics",
}