bart-large-squad-qg / README.md
asahi417's picture
model update
570f968
|
raw
history blame
13.4 kB
metadata
license: cc-by-4.0
metrics:
  - bleu4
  - meteor
  - rouge-l
  - bertscore
  - moverscore
language: en
datasets:
  - lmqg/qg_squad
pipeline_tag: text2text-generation
tags:
  - question generation
widget:
  - text: >-
      <hl> Beyonce <hl> further expanded her acting career, starring as blues
      singer Etta James in the 2008 musical biopic, Cadillac Records.
    example_title: Question Generation Example 1
  - text: >-
      Beyonce further expanded her acting career, starring as blues singer <hl>
      Etta James <hl> in the 2008 musical biopic, Cadillac Records.
    example_title: Question Generation Example 2
  - text: >-
      Beyonce further expanded her acting career, starring as blues singer Etta
      James in the 2008 musical biopic,  <hl> Cadillac Records <hl> .
    example_title: Question Generation Example 3
model-index:
  - name: lmqg/bart-large-squad
    results:
      - task:
          name: Text2text Generation
          type: text2text-generation
        dataset:
          name: lmqg/qg_squad
          type: default
          args: default
        metrics:
          - name: BLEU4
            type: bleu4
            value: 0.26168385362299557
          - name: ROUGE-L
            type: rouge-l
            value: 0.5384959163821219
          - name: METEOR
            type: meteor
            value: 0.27073122286541956
          - name: BERTScore
            type: bertscore
            value: 0.9100413219045603
          - name: MoverScore
            type: moverscore
            value: 0.6499011626820898
      - task:
          name: Text2text Generation
          type: text2text-generation
        dataset:
          name: lmqg/qg_squadshifts
          type: reddit
          args: reddit
        metrics:
          - name: BLEU4
            type: bleu4
            value: 0.059525104157825456
          - name: ROUGE-L
            type: rouge-l
            value: 0.22365090580055863
          - name: METEOR
            type: meteor
            value: 0.21499800504546457
          - name: BERTScore
            type: bertscore
            value: 0.9095144685254328
          - name: MoverScore
            type: moverscore
            value: 0.6059332247878408
      - task:
          name: Text2text Generation
          type: text2text-generation
        dataset:
          name: lmqg/qg_squadshifts
          type: new_wiki
          args: new_wiki
        metrics:
          - name: BLEU4
            type: bleu4
            value: 0.11118273173452982
          - name: ROUGE-L
            type: rouge-l
            value: 0.2967546690273089
          - name: METEOR
            type: meteor
            value: 0.27315087810722966
          - name: BERTScore
            type: bertscore
            value: 0.9322739617807421
          - name: MoverScore
            type: moverscore
            value: 0.6623000084761579
      - task:
          name: Text2text Generation
          type: text2text-generation
        dataset:
          name: lmqg/qg_subjqa
          type: tripadvisor
          args: tripadvisor
        metrics:
          - name: BLEU4
            type: bleu4
            value: 8.380171318718442e-7
          - name: ROUGE-L
            type: rouge-l
            value: 0.1402922852924756
          - name: METEOR
            type: meteor
            value: 0.1372146070365174
          - name: BERTScore
            type: bertscore
            value: 0.8891002409937424
          - name: MoverScore
            type: moverscore
            value: 0.5604572211470809
      - task:
          name: Text2text Generation
          type: text2text-generation
        dataset:
          name: lmqg/qg_squadshifts
          type: nyt
          args: nyt
        metrics:
          - name: BLEU4
            type: bleu4
            value: 0.08117757543966063
          - name: ROUGE-L
            type: rouge-l
            value: 0.25292097720734297
          - name: METEOR
            type: meteor
            value: 0.25254205113198686
          - name: BERTScore
            type: bertscore
            value: 0.9249009759439454
          - name: MoverScore
            type: moverscore
            value: 0.6406329128556304
      - task:
          name: Text2text Generation
          type: text2text-generation
        dataset:
          name: lmqg/qg_subjqa
          type: restaurants
          args: restaurants
        metrics:
          - name: BLEU4
            type: bleu4
            value: 0.0000011301750984972448
          - name: ROUGE-L
            type: rouge-l
            value: 0.13083168975354642
          - name: METEOR
            type: meteor
            value: 0.12419733006916912
          - name: BERTScore
            type: bertscore
            value: 0.8797711839570719
          - name: MoverScore
            type: moverscore
            value: 0.5542757411268555
      - task:
          name: Text2text Generation
          type: text2text-generation
        dataset:
          name: lmqg/qg_subjqa
          type: electronics
          args: electronics
        metrics:
          - name: BLEU4
            type: bleu4
            value: 0.00866799444965211
          - name: ROUGE-L
            type: rouge-l
            value: 0.1601628874804186
          - name: METEOR
            type: meteor
            value: 0.15348605312210778
          - name: BERTScore
            type: bertscore
            value: 0.8783386920680519
          - name: MoverScore
            type: moverscore
            value: 0.5634845371093992
      - task:
          name: Text2text Generation
          type: text2text-generation
        dataset:
          name: lmqg/qg_subjqa
          type: books
          args: books
        metrics:
          - name: BLEU4
            type: bleu4
            value: 0.006278914808207679
          - name: ROUGE-L
            type: rouge-l
            value: 0.12368226019088967
          - name: METEOR
            type: meteor
            value: 0.11576293675813865
          - name: BERTScore
            type: bertscore
            value: 0.8807110440044503
          - name: MoverScore
            type: moverscore
            value: 0.5555905941686486
      - task:
          name: Text2text Generation
          type: text2text-generation
        dataset:
          name: lmqg/qg_subjqa
          type: movies
          args: movies
        metrics:
          - name: BLEU4
            type: bleu4
            value: 0.0000010121579426501661
          - name: ROUGE-L
            type: rouge-l
            value: 0.12508697028506718
          - name: METEOR
            type: meteor
            value: 0.11862284941640638
          - name: BERTScore
            type: bertscore
            value: 0.8748829724726739
          - name: MoverScore
            type: moverscore
            value: 0.5528899173535703
      - task:
          name: Text2text Generation
          type: text2text-generation
        dataset:
          name: lmqg/qg_subjqa
          type: grocery
          args: grocery
        metrics:
          - name: BLEU4
            type: bleu4
            value: 0.00528043272450429
          - name: ROUGE-L
            type: rouge-l
            value: 0.12343711316491492
          - name: METEOR
            type: meteor
            value: 0.15133496445452477
          - name: BERTScore
            type: bertscore
            value: 0.8778951253890991
          - name: MoverScore
            type: moverscore
            value: 0.5701949938103265
      - task:
          name: Text2text Generation
          type: text2text-generation
        dataset:
          name: lmqg/qg_squadshifts
          type: amazon
          args: amazon
        metrics:
          - name: BLEU4
            type: bleu4
            value: 0.06530369842068952
          - name: ROUGE-L
            type: rouge-l
            value: 0.25030985091008146
          - name: METEOR
            type: meteor
            value: 0.2229994442645732
          - name: BERTScore
            type: bertscore
            value: 0.9092814804525936
          - name: MoverScore
            type: moverscore
            value: 0.6086538514008419

Model Card of lmqg/bart-large-squad

This model is fine-tuned version of facebook/bart-large for question generation task on the lmqg/qg_squad (dataset_name: default) via lmqg.

Please cite our paper if you use the model (https://arxiv.org/abs/2210.03992).


@inproceedings{ushio-etal-2022-generative,
    title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration",
    author = "Ushio, Asahi  and
        Alva-Manchego, Fernando  and
        Camacho-Collados, Jose",
    booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
    month = dec,
    year = "2022",
    address = "Abu Dhabi, U.A.E.",
    publisher = "Association for Computational Linguistics",
}

Overview

Usage


from lmqg import TransformersQG
# initialize model
model = TransformersQG(language='en', model='lmqg/bart-large-squad')
# model prediction
question = model.generate_q(list_context=["William Turner was an English painter who specialised in watercolour landscapes"], list_answer=["William Turner"])
  • With transformers

from transformers import pipeline
# initialize model
pipe = pipeline("text2text-generation", 'lmqg/bart-large-squad')
# question generation
question = pipe('<hl> Beyonce <hl> further expanded her acting career, starring as blues singer Etta James in the 2008 musical biopic, Cadillac Records.')

Evaluation Metrics

Metrics

Dataset Type BLEU4 ROUGE-L METEOR BERTScore MoverScore Link
lmqg/qg_squad default 0.262 0.538 0.271 0.91 0.65 link

Out-of-domain Metrics

Dataset Type BLEU4 ROUGE-L METEOR BERTScore MoverScore Link
lmqg/qg_squadshifts reddit 0.06 0.224 0.215 0.91 0.606 link
lmqg/qg_squadshifts new_wiki 0.111 0.297 0.273 0.932 0.662 link
lmqg/qg_subjqa tripadvisor 0.0 0.14 0.137 0.889 0.56 link
lmqg/qg_squadshifts nyt 0.081 0.253 0.253 0.925 0.641 link
lmqg/qg_subjqa restaurants 0.0 0.131 0.124 0.88 0.554 link
lmqg/qg_subjqa electronics 0.009 0.16 0.153 0.878 0.563 link
lmqg/qg_subjqa books 0.006 0.124 0.116 0.881 0.556 link
lmqg/qg_subjqa movies 0.0 0.125 0.119 0.875 0.553 link
lmqg/qg_subjqa grocery 0.005 0.123 0.151 0.878 0.57 link
lmqg/qg_squadshifts amazon 0.065 0.25 0.223 0.909 0.609 link

Training hyperparameters

The following hyperparameters were used during fine-tuning:

  • dataset_path: lmqg/qg_squad
  • dataset_name: default
  • input_types: ['paragraph_answer']
  • output_types: ['question']
  • prefix_types: None
  • model: facebook/bart-large
  • max_length: 512
  • max_length_output: 32
  • epoch: 4
  • batch: 32
  • lr: 5e-05
  • fp16: False
  • random_seed: 1
  • gradient_accumulation_steps: 4
  • label_smoothing: 0.15

The full configuration can be found at fine-tuning config file.

Citation


@inproceedings{ushio-etal-2022-generative,
    title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration",
    author = "Ushio, Asahi  and
        Alva-Manchego, Fernando  and
        Camacho-Collados, Jose",
    booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
    month = dec,
    year = "2022",
    address = "Abu Dhabi, U.A.E.",
    publisher = "Association for Computational Linguistics",
}