File size: 7,553 Bytes
b822f77
 
424fded
b822f77
424fded
 
b822f77
424fded
 
 
b822f77
424fded
b822f77
424fded
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b822f77
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ed98a81
b822f77
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
---
datasets:
- lmms-lab/LLaVA-OneVision-Data
language:
- en
- zh
library_name: transformers
license: apache-2.0
metrics:
- accuracy
tags:
- multimodal
model-index:
- name: llava-onevision-qwen-72b-si
  results:
  - task:
      type: multimodal
    dataset:
      name: AI2D
      type: ai2d
    metrics:
    - type: accuracy
      value: 85.1
      name: accuracy
      verified: true
  - task:
      type: multimodal
    dataset:
      name: ChartQA
      type: chartqa
    metrics:
    - type: accuracy
      value: 84.9
      name: accuracy
      verified: true
  - task:
      type: multimodal
    dataset:
      name: DocVQA
      type: docvqa
    metrics:
    - type: accuracy
      value: 93.5
      name: accuracy
      verified: true
  - task:
      type: multimodal
    dataset:
      name: InfoVQA
      type: infovqa
    metrics:
    - type: accuracy
      value: 77.7
      name: accuracy
      verified: true
  - task:
      type: multimodal
    dataset:
      name: MathVerse
      type: mathverse
    metrics:
    - type: accuracy
      value: 37.7
      name: accuracy
      verified: true
  - task:
      type: multimodal
    dataset:
      name: MathVista
      type: mathvista
    metrics:
    - type: accuracy
      value: 66.5
      name: accuracy
      verified: true
  - task:
      type: multimodal
    dataset:
      name: MMBench
      type: mmbench
    metrics:
    - type: accuracy
      value: 86.6
      name: accuracy
      verified: true
  - task:
      type: multimodal
    dataset:
      name: MME
      type: mme
    metrics:
    - type: score
      value: 2269
      name: score
      verified: true
  - task:
      type: multimodal
    dataset:
      name: MMMU
      type: mmmu
    metrics:
    - type: accuracy
      value: 57.4
      name: accuracy
      verified: true
  - task:
      type: multimodal
    dataset:
      name: MMVet
      type: mmvet
    metrics:
    - type: accuracy
      value: 60.0
      name: accuracy
      verified: true
  - task:
      type: multimodal
    dataset:
      name: MMStar
      type: mmstar
    metrics:
    - type: accuracy
      value: 65.2
      name: accuracy
      verified: true
  - task:
      type: multimodal
    dataset:
      name: Seed-Bench
      type: seed-bench
    metrics:
    - type: accuracy
      value: 77.6
      name: accuracy
      verified: true
  - task:
      type: multimodal
    dataset:
      name: Science-QA
      type: science-qa
    metrics:
    - type: accuracy
      value: 91.3
      name: accuracy
      verified: true
  - task:
      type: multimodal
    dataset:
      name: ImageDC
      type: imagedc
    metrics:
    - type: accuracy
      value: 91.5
      name: accuracy
      verified: true
  - task:
      type: multimodal
    dataset:
      name: MMLBench
      type: mmlbench
    metrics:
    - type: accuracy
      value: 84.4
      name: accuracy
      verified: true
  - task:
      type: multimodal
    dataset:
      name: RealWorldQA
      type: realworldqa
    metrics:
    - type: accuracy
      value: 73.8
      name: accuracy
      verified: true
  - task:
      type: multimodal
    dataset:
      name: Vibe-Eval
      type: vibe-eval
    metrics:
    - type: accuracy
      value: 46.7
      name: accuracy
      verified: true
  - task:
      type: multimodal
    dataset:
      name: LLaVA-W
      type: llava-w
    metrics:
    - type: accuracy
      value: 93.7
      name: accuracy
      verified: true
  - task:
      type: multimodal
    dataset:
      name: LLaVA-Wilder
      type: l-wilder
    metrics:
    - type: accuracy
      value: 72.9
      name: accuracy
      verified: true
---

# LLaVA-OneVision

![banner](https://i.postimg.cc/pL17YtG4/WX20240508-220230-2x.png)

Play with the model on the [LLaVA OneVision Chat](https://llava-onevision.lmms-lab.com/).

## Table of Contents

1. [Model Summary](##model-summary)
2. [Use](##use)
3. [Limitations](##limitations)
4. [Training](##training)
5. [License](##license)
6. [Citation](##citation)

## Model Summary

The LLaVA-OneVision models are 0.5/7/72B parameter models trained on [LLaVA-OneVision](https://huggingface.co/datasets/lmms-lab/LLaVA-OneVision-Data), based on Qwen2 language model with a context window of 32K tokens.

- **Repository:** [LLaVA-VL/LLaVA-NeXT](https://github.com/LLaVA-VL/LLaVA-NeXT?tab=readme-ov-file)
- **Project Website:** [llava-onevision.lmms-lab.com](llava-onevision.lmms-lab.com)
- **Paper:** [LLaVA-OneVision](arxiv.org/abs/2408.03326)
- **Point of Contact:** [Bo Li](mailto:drluodian@gmail.com)
- **Languages:** English, Chinese

## Use

### Intended use

The model was trained on [LLaVA-OneVision Dataset](https://huggingface.co/datasets/lmms-lab/LLaVA-OneVision-Data) and have the ability to interact with images, multi-image and videos.

**Feel free to share your generations in the Community tab!**

### Generation

```python
# pip install git+https://github.com/LLaVA-VL/LLaVA-NeXT.git
from llava.model.builder import load_pretrained_model
from llava.mm_utils import get_model_name_from_path, process_images, tokenizer_image_token
from llava.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN, IGNORE_INDEX
from llava.conversation import conv_templates, SeparatorStyle

from PIL import Image
import requests
import copy
import torch

import sys
import warnings

warnings.filterwarnings("ignore")
pretrained = "lmms-lab/llava-onevision-qwen2-0.5b-si"
model_name = "llava_qwen"
device = "cuda"
device_map = "auto"
tokenizer, model, image_processor, max_length = load_pretrained_model(pretrained, None, model_name, device_map=device_map)  # Add any other thing you want to pass in llava_model_args

model.eval()

url = "https://github.com/haotian-liu/LLaVA/blob/1a91fc274d7c35a9b50b3cb29c4247ae5837ce39/images/llava_v1_5_radar.jpg?raw=true"
image = Image.open(requests.get(url, stream=True).raw)
image_tensor = process_images([image], image_processor, model.config)
image_tensor = [_image.to(dtype=torch.float16, device=device) for _image in image_tensor]

conv_template = "qwen_1_5"  # Make sure you use correct chat template for different models
question = DEFAULT_IMAGE_TOKEN + "\nWhat is shown in this image?"
conv = copy.deepcopy(conv_templates[conv_template])
conv.append_message(conv.roles[0], question)
conv.append_message(conv.roles[1], None)
prompt_question = conv.get_prompt()

input_ids = tokenizer_image_token(prompt_question, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt").unsqueeze(0).to(device)
image_sizes = [image.size]


cont = model.generate(
    input_ids,
    images=image_tensor,
    image_sizes=image_sizes,
    do_sample=False,
    temperature=0,
    max_new_tokens=4096,
)
text_outputs = tokenizer.batch_decode(cont, skip_special_tokens=True)
print(text_outputs)
```

# Training

## Model

- **Architecture:** SO400M + Qwen2
- **Pretraining Stage:** LCS-558K, 1 epoch, projector
- **Mid Stage:** A mixture of 4.7M high-quality synthetic data, 1 epoch, full model
- **Final-Image Stage:** A mixture of 3.6M single-image data, 1 epoch, full model
- **OneVision Stage:** A mixture of 1.6M single-image/multi-image/video data, 1 epoch, full model
- **Precision:** bfloat16

## Hardware & Software

- **GPUs:** 256 \* Nvidia Tesla A100 (for whole model series training)
- **Orchestration:** [Huggingface Trainer](https://huggingface.co/docs/transformers/main_classes/trainer)
- **Neural networks:** [PyTorch](https://github.com/pytorch/pytorch)

# Citation

```
@article{li2024llavaonevision,
      title={LLaVA-OneVision},
}
```