File size: 4,373 Bytes
d0aaa02
 
 
 
0935c6f
5ae26f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
---
license: apache-2.0
tags:
- text-generation-inference
pipeline_tag: text-generation
---

<div align="center">
  <img src="https://cdn-uploads.huggingface.co/production/uploads/64ccdc322e592905f922a06e/VhwQtaklohkUXFWkjA-3M.png" width="450"/>

English | [简体中文](README_zh-CN.md)

</div>

<p align="center">
    👋 join us on <a href="https://twitter.com/intern_lm" target="_blank">Twitter</a>, <a href="https://discord.gg/xa29JuW87d" target="_blank">Discord</a> and <a href="https://r.vansin.top/?r=internwx" target="_blank">WeChat</a>
</p>


# W4A16 LLM Model Deployment

LMDeploy supports LLM model inference of 4-bit weight, with the minimum requirement for NVIDIA graphics cards being sm80.

Before proceeding with the inference, please ensure that lmdeploy(>=v0.0.4) is installed.

```shell
pip install lmdeploy
```

## 4-bit LLM model Inference

You can download the pre-quantized 4-bit weight models from LMDeploy's [model zoo](https://huggingface.co/lmdeploy) and conduct inference using the following command.

Alternatively, you can quantize 16-bit weights to 4-bit weights following the ["4-bit Weight Quantization"](#4-bit-weight-quantization) section, and then perform inference as per the below instructions.


```shell
git-lfs install
git clone https://huggingface.co/lmdeploy/internlm-chat-7b-w4
```

As demonstrated in the command below, first convert the model's layout using `turbomind.deploy`, and then you can interact with the AI assistant in the terminal

```shell

## Convert the model's layout and store it in the default path, ./workspace.
python3 -m lmdeploy.serve.turbomind.deploy \
    --model-name internlm \
    --model-path ./internlm-chat-7b-w4 \
    --model-format awq \
    --group-size 128

## inference
python3 -m lmdeploy.turbomind.chat ./workspace
```

## Serve with gradio

If you wish to interact with the model via web ui, please initiate the gradio server as indicated below:

```shell
python3 -m lmdeploy.serve.turbomind ./workspace --server_name {ip_addr} ----server_port {port}
```

Subsequently, you can open the website `http://{ip_addr}:{port}` in your browser and interact with the model

## Inference Performance

We benchmarked the Llama 2 7B and 13B with 4-bit quantization on NVIDIA GeForce RTX 4090 using [profile_generation.py](https://github.com/InternLM/lmdeploy/blob/main/benchmark/profile_generation.py). And we measure the token generation throughput (tokens/s) by setting a single prompt token and generating 512 tokens. All the results are measured for single batch inference.

| model       | llm-awq | mlc-llm | turbomind |
| ----------- | ------- | ------- | --------- |
| Llama 2 7B  | 112.9   | 159.4   | 206.4     |
| Llama 2 13B | N/A     | 90.7    | 115.8     |

```shell
python benchmark/profile_generation.py \
  ./workspace \
  --concurrency 1 --input_seqlen 1 --output_seqlen 512
```

## 4-bit Weight Quantization

It includes two steps:

- generate quantization parameter
- quantize model according to the parameter

### Step 1: Generate Quantization Parameter

```shell
python3 -m lmdeploy.lite.apis.calibrate \
  --model $HF_MODEL \
  --calib_dataset 'c4' \             # Calibration dataset, supports c4, ptb, wikitext2, pileval
  --calib_samples 128 \              # Number of samples in the calibration set, if memory is insufficient, you can appropriately reduce this
  --calib_seqlen 2048 \              # Length of a single piece of text, if memory is insufficient, you can appropriately reduce this
  --work_dir $WORK_DIR \             # Folder storing Pytorch format quantization statistics parameters and post-quantization weight
```

### Step2: Quantize Weights

LMDeploy employs AWQ algorithm for model weight quantization.

```shell
python3 -m lmdeploy.lite.apis.auto_awq \
  --model $HF_MODEL \
  --w_bits 4 \                       # Bit number for weight quantization
  --w_sym False \                    # Whether to use symmetric quantization for weights
  --w_group_size 128 \               # Group size for weight quantization statistics
  --work_dir $WORK_DIR \             # Directory saving quantization parameters from Step 1
```

After the quantization is complete, the quantized model is saved to `$WORK_DIR`. Then you can proceed with model inference according to the instructions in the ["4-Bit Weight Model Inference"](#4-bit-llm-model-inference) section.