File size: 3,655 Bytes
8bcb06e
d477019
 
8bcb06e
960a6e6
f2d88e4
960a6e6
 
 
f2d88e4
960a6e6
126e4a7
724e0fe
960a6e6
c17f82f
960a6e6
3650c25
5151b61
 
5fcf207
960a6e6
c17f82f
960a6e6
 
 
 
 
d477019
960a6e6
 
 
 
 
 
 
c17f82f
 
960a6e6
 
 
 
5fcf207
960a6e6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f2d88e4
d477019
960a6e6
 
 
 
 
 
 
 
 
 
d477019
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
---
license: cc-by-sa-4.0
inference: false
---

# SLIM-SA-NER

<!-- Provide a quick summary of what the model is/does. -->

**slim-sa-ner** combines two of the most popular traditional classifier functions (**Sentiment Analysis** and **Named Entity Recognition**), and reimagines them as function calls on a specialized decoder-based LLM, generating output consisting of a python dictionary with keys corresponding to sentiment, and NER identifiers, such as people, organization, and place, e.g.:  

&nbsp;&nbsp;&nbsp;&nbsp;`{'sentiment': ['positive'], people': ['..'], 'organization': ['..'],`  
&nbsp;&nbsp;&nbsp;&nbsp; `'place': ['..]}`

This 3B parameter 'combo' model is designed to illustrate the potential power of using function calls on small, specialized models to enable a single model architecture to combine the capabilities of what were traditionally two separate model architectures on an encoder.  

The intent of SLIMs is to forge a middle-ground between traditional encoder-based classifiers and open-ended API-based LLMs, providing an intuitive, flexible natural language response, without complex prompting, and with improved generalization and ability to fine-tune to a specific domain use case.  


This model is fine-tuned on top of [**llmware/bling-stable-lm-3b-4e1t-v0**](https://huggingface.co/llmware/bling-stable-lm-3b-4e1t-v0), which in turn, is a fine-tune of stabilityai/stablelm-3b-4elt.

For fast inference, we would recommend the 'quantized tool' version of this model, e.g.,  [**'slim-sa-ner-tool'**](https://huggingface.co/llmware/slim-sa-ner-tool).  


## Prompt format:

`function = "classify"`  
`params = "sentiment, person, organization, place"`  
`prompt = "<human> " + {text} + "\n" + `  
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp; &nbsp; &nbsp; &nbsp;`"<{function}> " + {params} + "</{function}>" + "\n<bot>:"`  


<details>
<summary>Transformers Script </summary>

    model = AutoModelForCausalLM.from_pretrained("llmware/slim-sa-ner")
    tokenizer = AutoTokenizer.from_pretrained("llmware/slim-sa-ner")

    function = "classify"
    params = "topic"

    text = "Tesla stock declined yesterday 8% in premarket trading after a poorly-received event in San Francisco yesterday, in which the company indicated a likely shortfall in revenue."  
    
    prompt = "<human>: " + text + "\n" + f"<{function}> {params} </{function}>\n<bot>:"

    inputs = tokenizer(prompt, return_tensors="pt")
    start_of_input = len(inputs.input_ids[0])

    outputs = model.generate(
        inputs.input_ids.to('cpu'),
        eos_token_id=tokenizer.eos_token_id,
        pad_token_id=tokenizer.eos_token_id,
        do_sample=True,
        temperature=0.3,
        max_new_tokens=100
    )

    output_only = tokenizer.decode(outputs[0][start_of_input:], skip_special_tokens=True)

    print("output only: ", output_only)  

    # here's the fun part
    try:
        output_only = ast.literal_eval(llm_string_output)
        print("success - converted to python dictionary automatically")
    except:
        print("fail - could not convert to python dictionary automatically - ", llm_string_output)
   
   </details>  
 
<details>  



    
<summary>Using as Function Call in LLMWare</summary>

    from llmware.models import ModelCatalog
    slim_model = ModelCatalog().load_model("llmware/slim-sa-ner")
    response = slim_model.function_call(text,params=["sentiment", "people", "organization", "place"], function="classify")

    print("llmware - llm_response: ", response)

</details>  

    
## Model Card Contact

Darren Oberst & llmware team  

[Join us on Discord](https://discord.gg/MhZn5Nc39h)