File size: 6,802 Bytes
baeb369 8ec1d0c baeb369 b78da68 0f32a0e b78da68 9818cf7 b78da68 b94b408 804187d b94b408 b78da68 acb17c8 b78da68 acb17c8 03d8328 acb17c8 9818cf7 44dbaf1 acb17c8 b78da68 acb17c8 44dbaf1 acb17c8 9818cf7 acb17c8 b78da68 2ae3040 b78da68 e028a91 492f901 b78da68 44dbaf1 b78da68 201449a b78da68 faef3db b78da68 06337bb b78da68 201449a b78da68 44dbaf1 b78da68 44dbaf1 b78da68 44dbaf1 b78da68 201449a b78da68 201449a b78da68 44dbaf1 b78da68 44dbaf1 b78da68 44dbaf1 b78da68 44dbaf1 b78da68 492f901 b78da68 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 |
---
license: apache-2.0
inference: false
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
BLING-1b-0.1 is the **smallest** model release in the BLING ("Best Little Instruction-following No-GPU-required") model series.
BLING models are fine-tuned with distilled high-quality custom instruct datasets, targeted at a specific subset of instruct tasks with
the objective of providing a high-quality Instruct model that is 'inference-ready' on a CPU laptop even
without using any advanced quantization optimizations.
### Benchmark Tests
Evaluated against the benchmark test: [RAG-Instruct-Benchmark-Tester](https://www.huggingface.co/datasets/llmware/rag_instruct_benchmark_tester)
Average of 2 Test Runs with 1 point for correct answer, 0.5 point for partial correct or blank / NF, 0.0 points for incorrect, and -1 points for hallucinations.
--**Accuracy Score**: **73.25** correct out of 100
--Not Found Classification: 17.5%
--Boolean: 29%
--Math/Logic: 0%
--Complex Questions (1-5): 1 (Low)
--Summarization Quality (1-5): 1 (Coherent, extractive)
--Hallucinations: No hallucinations observed in test runs.
For test run results (and good indicator of target use cases), please see the files ("core_rag_test" and "answer_sheet" in this repo).
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** llmware
- **Model type:** GPTNeoX instruct-trained decoder
- **Language(s) (NLP):** English
- **License:** Apache 2.0
- **Finetuned from model [optional]:** EleutherAI/Pythia-1b-deduped
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
The intended use of BLING models is two-fold:
1. Provide high-quality Instruct models that can run on a laptop for local testing. We have found it extremely useful when building a
proof-of-concept, or working with sensitive enterprise data that must be closely guarded, especially in RAG use cases.
2. Push the state of the art for smaller Instruct-following models in the sub-7B parameter range, especially 1B-3B, as single-purpose
automation tools for specific tasks through targeted fine-tuning datasets and focused "instruction" tasks.
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
BLING is designed for enterprise automation use cases, especially in knowledge-intensive industries, such as financial services,
legal and regulatory industries with complex information sources. Rather than try to be "all things to all people," BLING models try to focus on a narrower set of Instructions more suitable to a ~1B parameter GPT model.
BLING is ideal for rapid prototyping, testing, and the ability to perform an end-to-end workflow locally on a laptop without
having to send sensitive information over an Internet-based API.
The first BLING models have been trained for common RAG scenarios, specifically: question-answering, key-value extraction, and basic summarization as the core instruction types
without the need for a lot of complex instruction verbiage - provide a text passage context, ask questions, and get clear fact-based responses.
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
Any model can provide inaccurate or incomplete information, and should be used in conjunction with appropriate safeguards and fact-checking mechanisms.
This model can be used effective for quick "on laptop" testing and will be generally accurate in relatively simple extractive Q&A and basic summarization.
For higher performing models, please see the larger models in the BLING series, starting at 1.3B-1.4B up to 3B.
Note: this was the smallest model that we were able to train to consistently recognize Q&A and RAG instructions.
## How to Get Started with the Model
The fastest way to get started with BLING is through direct import in transformers:
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("llmware/bling-1b-0.1")
model = AutoModelForCausalLM.from_pretrained("llmware/bling-1b-0.1")
Please refer to the generation_test .py files in the Files repository, which includes 200 samples and script to test the model. The **generation_test_llmware_script.py** includes built-in llmware capabilities for fact-checking, as well as easy integration with document parsing and actual retrieval to swap out the test set for RAG workflow consisting of business documents.
The BLING model was fine-tuned with a simple "\<human> and \<bot> wrapper", so to get the best results, wrap inference entries as:
full_prompt = "\<human>\: " + my_prompt + "\n" + "\<bot>\:"
The BLING model was fine-tuned with closed-context samples, which assume generally that the prompt consists of two sub-parts:
1. Text Passage Context, and
2. Specific question or instruction based on the text passage
To get the best results, package "my_prompt" as follows:
my_prompt = {{text_passage}} + "\n" + {{question/instruction}}
If you are using a HuggingFace generation script:
# prepare prompt packaging used in fine-tuning process
new_prompt = "<human>: " + entries["context"] + "\n" + entries["query"] + "\n" + "<bot>:"
inputs = tokenizer(new_prompt, return_tensors="pt")
start_of_output = len(inputs.input_ids[0])
# temperature: set at 0.3 for consistency of output
# max_new_tokens: set at 100 - may prematurely stop a few of the summaries
outputs = model.generate(
inputs.input_ids.to(device),
eos_token_id=tokenizer.eos_token_id,
pad_token_id=tokenizer.eos_token_id,
do_sample=True,
temperature=0.3,
max_new_tokens=100,
)
output_only = tokenizer.decode(outputs[0][start_of_output:],skip_special_tokens=True)
## Citation [optional]
BLING models are built on top of EleutherAI/Pythia base - please see citation for Pythia below:
@misc{biderman2023pythia,
title={Pythia: A Suite for Analyzing Large Language Models Across Training and Scaling},
author={Stella Biderman and Hailey Schoelkopf and Quentin Anthony and Herbie Bradley and Kyle O'Brien and Eric Hallahan and Mohammad Aflah Khan and Shivanshu Purohit and USVSN Sai Prashanth and Edward Raff and Aviya Skowron and Lintang Sutawika and Oskar van der Wal},
year={2023},
eprint={2304.01373},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
## Model Card Contact
Darren Oberst & llmware team
Please reach out anytime if you are interested in this project.
|