File size: 7,535 Bytes
fd53de4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
26264ab
 
489a6a1
 
fd53de4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
---
license: apache-2.0
language:
- en
- ja
programming_language:
- C
- C++
- C#
- Go
- Java
- JavaScript
- Lua
- PHP
- Python
- Ruby
- Rust
- Scala
- TypeScript
library_name: transformers
pipeline_tag: text-generation
inference: false
---

# llm-jp-3-172b-alpha2-instruct

This repository provides large language models developed by the [Research and Development Center for Large Language Models](https://llmc.nii.ac.jp/) at the [National Institute of Informatics](https://www.nii.ac.jp/en/).

The development was partially supported by [GENIAC](https://www.meti.go.jp/policy/mono_info_service/geniac/index.html).

| Model Variants | 
| :--- |
| [llm-jp-3-172b-alpha1](https://huggingface.co/llm-jp/llm-jp-3-172b-alpha1) |
| [llm-jp-3-172b-alpha1-instruct](https://huggingface.co/llm-jp/llm-jp-3-172b-alpha1-instruct) |
| [llm-jp-3-172b-alpha2](https://huggingface.co/llm-jp/llm-jp-3-172b-alpha2) |
| [llm-jp-3-172b-alpha2-instruct](https://huggingface.co/llm-jp/llm-jp-3-172b-alpha2-instruct) |
| [llm-jp-3-172b-beta1](https://huggingface.co/llm-jp/llm-jp-3-172b-beta1) |
| [llm-jp-3-172b-beta1-instruct](https://huggingface.co/llm-jp/llm-jp-3-172b-beta1-instruct) |


Checkpoints format: Hugging Face Transformers


**Caution!: While it has been confirmed that the performance of LLM-jp-3 172B alpha1 and alpha2 is significantly lower than previously released models, we believe they can still be useful for research purposes and are making them available to the public.
For more information, please visit [this link](https://llmc.nii.ac.jp/en/topics/llm-jp-3-172b-alpha1-alpha2/).**


## Required Libraries and Their Versions

- torch>=2.3.0
- transformers>=4.40.1
- tokenizers>=0.19.1
- accelerate>=0.29.3
- flash-attn>=2.5.8

## Usage

```python
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("llm-jp/llm-jp-3-172b-alpha2-instruct")
model = AutoModelForCausalLM.from_pretrained("llm-jp/llm-jp-3-172b-alpha2-instruct", device_map="auto", torch_dtype=torch.bfloat16)
chat = [
    {"role": "system", "content": "以下は、タスクを説明する指示です。要求を適切に満たす応答を書きなさい。"},
    {"role": "user", "content": "自然言語処理とは何か"},
]
tokenized_input = tokenizer.apply_chat_template(chat, add_generation_prompt=True, tokenize=True, return_tensors="pt").to(model.device)
with torch.no_grad():
    output = model.generate(
        tokenized_input,
        max_new_tokens=100,
        do_sample=True,
        top_p=0.95,
        temperature=0.7,
        repetition_penalty=1.05,
    )[0]
print(tokenizer.decode(output))
```


## Model Details

- **Model type:** Transformer-based Language Model
- **Total seen tokens:**:
  - alpha1: 0.7T
  - alpha2: 1.4T
  - beta1: 0.7T


|Params|Layers|Hidden size|Heads|Context length|
|:---:|:---:|:---:|:---:|:---:|
|172b|96|12288|96|4096|

## Tokenizer

The tokenizer of this model is based on [huggingface/tokenizers](https://github.com/huggingface/tokenizers) Unigram byte-fallback model.
The vocabulary entries were converted from [`llm-jp-tokenizer v3.0`](https://github.com/llm-jp/llm-jp-tokenizer/releases/tag/v3.0b2).
Please refer to [README.md](https://github.com/llm-jp/llm-jp-tokenizer) of `llm-jp-tokenizer` for details on the vocabulary construction procedure (the pure SentencePiece training does not reproduce our vocabulary).

## Datasets

### Pre-training

The models have been pre-trained using a blend of the following datasets.

| Language | Dataset | Tokens|
|:---|:---|---:|
|Japanese|[Wikipedia](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|2.6B
||[Common Crawl](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|762.8B
||[WARP/PDF](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|282.1B
||[WARP/HTML](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|2.7B
||[Kaken](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|1.8B
|English|[Wikipedia](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|4.7B
||[Dolma/CC-head](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|608.5B
||[Dolma/C4](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|181.6B
||[Dolma/Reddit](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|83.1B
||[Dolma/PeS2o](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|62.9B
||[Dolma/Gutenberg](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|5.5B
||[Dolma/Wiki](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|3.9B
|Code|[The Stack](https://huggingface.co/datasets/bigcode/the-stack)|114.1B
|Chinese|[Wikipedia](https://huggingface.co/datasets/bigcode/the-stack)|0.8B
|Korean|[Wikipedia](https://huggingface.co/datasets/bigcode/the-stack)|0.3B

### Instruction tuning

The models have been fine-tuned on the following datasets.
 
| Language | Dataset | description |
|:---|:---|:---|
|Japanese|[ichikara-instruction-004-002](https://liat-aip.sakura.ne.jp/wp/llm%e3%81%ae%e3%81%9f%e3%82%81%e3%81%ae%e6%97%a5%e6%9c%ac%e8%aa%9e%e3%82%a4%e3%83%b3%e3%82%b9%e3%83%88%e3%83%a9%e3%82%af%e3%82%b7%e3%83%a7%e3%83%b3%e3%83%87%e3%83%bc%e3%82%bf%e4%bd%9c%e6%88%90/llm%e3%81%ae%e3%81%9f%e3%82%81%e3%81%ae%e6%97%a5%e6%9c%ac%e8%aa%9e%e3%82%a4%e3%83%b3%e3%82%b9%e3%83%88%e3%83%a9%e3%82%af%e3%82%b7%e3%83%a7%e3%83%b3%e3%83%87%e3%83%bc%e3%82%bf-%e5%85%ac%e9%96%8b/)| A manually constructed Japanese instruction dataset |
|        |[answer-carefully-001](https://liat-aip.sakura.ne.jp/wp/answercarefully-dataset/)| A manually constructed Japanese instruction dataset focusing on LLMs' safety |
|        |[databricks-dolly-15k-ja](https://huggingface.co/datasets/llm-jp/databricks-dolly-15k-ja)| [databricks-dolly-15k](https://huggingface.co/datasets/databricks/databricks-dolly-15k) translated into Japanese using DeepL  |
|        |[oasst1-21k-ja](https://huggingface.co/datasets/llm-jp/oasst1-21k-ja)| A subset of [oasst1](https://huggingface.co/datasets/OpenAssistant/oasst1) translated into Japanese using DeepL |
|        |[oasst2-33k-ja](https://huggingface.co/datasets/llm-jp/oasst2-33k-ja)| A subset of [oasst2](https://huggingface.co/datasets/OpenAssistant/oasst2) translated into Japanese using DeepL |
|        |aya-dataset-ja| A Japanese subset of [aya_dataset](https://huggingface.co/datasets/CohereForAI/aya_dataset) | 
|        |ichikara-instruction-format| A small amount of instruction dataset edited from ichikara-instruction, with some constraints on the output format. | 
|English |[databricks-dolly-15k](https://huggingface.co/datasets/databricks/databricks-dolly-15k) | - | 
|        |[oasst1-21k-en](https://huggingface.co/datasets/llm-jp/oasst1-21k-en)| A subset of [oasst1](https://huggingface.co/datasets/OpenAssistant/oasst1) |
|        |[oasst2-33k-en](https://huggingface.co/datasets/llm-jp/oasst2-33k-en)| A subset of [oasst2](https://huggingface.co/datasets/OpenAssistant/oasst2) |
|        |[Daring-Anteater](https://huggingface.co/datasets/nvidia/Daring-Anteater)| - | 
|        |[FLAN](https://huggingface.co/datasets/Open-Orca/FLAN) | We used sampled one. | 

## Risks and Limitations

The models released here are in the early stages of our research and development and have not been tuned to ensure outputs align with human intent and safety considerations.


## Send Questions to

llm-jp(at)nii.ac.jp


## License

[Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0)


## Model Card Authors

*The names are listed in alphabetical order.*

Hirokazu Kiyomaru and Takashi Kodama.