|
--- |
|
library_name: peft |
|
tags: |
|
- alignment-handbook |
|
- generated_from_trainer |
|
datasets: |
|
- llama-duo/synth_summarize_dataset_dedup |
|
base_model: google/gemma-7b |
|
model-index: |
|
- name: gemma7b-summarize-gpt4o-8k |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# gemma7b-summarize-gpt4o-8k |
|
|
|
This model is a fine-tuned version of [google/gemma-7b](https://huggingface.co/google/gemma-7b) on the llama-duo/synth_summarize_dataset_dedup dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 2.8129 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0002 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 2 |
|
- seed: 42 |
|
- distributed_type: multi-GPU |
|
- num_devices: 8 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 64 |
|
- total_eval_batch_size: 16 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:-----:|:----:|:---------------:| |
|
| 30.8653 | 1.0 | 14 | 10.6638 | |
|
| 18.5328 | 2.0 | 28 | 7.3031 | |
|
| 11.486 | 3.0 | 42 | 6.6280 | |
|
| 2.4959 | 4.0 | 56 | 3.5087 | |
|
| 1.742 | 5.0 | 70 | 3.0216 | |
|
| 1.5971 | 6.0 | 84 | 2.8802 | |
|
| 1.4792 | 7.0 | 98 | 2.8307 | |
|
| 1.4333 | 8.0 | 112 | 2.8081 | |
|
| 1.4129 | 9.0 | 126 | 2.8151 | |
|
| 1.4048 | 10.0 | 140 | 2.8129 | |
|
|
|
|
|
### Framework versions |
|
|
|
- PEFT 0.10.0 |
|
- Transformers 4.40.0 |
|
- Pytorch 2.1.2+cu121 |
|
- Datasets 2.18.0 |
|
- Tokenizers 0.19.1 |