File size: 10,679 Bytes
1c75048
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
import numpy as np,parselmouth,torch,pdb
from time import time as ttime
import torch.nn.functional as F
from config import x_pad,x_query,x_center,x_max
from sklearn.cluster import KMeans

def resize2d(x, target_len,is1):
    minn=1 if is1==True else 0
    ss = np.array(x).astype("float32")
    ss[ss <=minn] = np.nan
    target = np.interp(np.arange(0, len(ss) * target_len, len(ss)) / target_len, np.arange(0, len(ss)), ss)
    res = np.nan_to_num(target)
    return res

class VC(object):
    def __init__(self,tgt_sr,device,is_half):
        self.sr=16000#hubert输入采样率
        self.window=160#每帧点数
        self.t_pad=self.sr*x_pad#每条前后pad时间
        self.t_pad_tgt=tgt_sr*x_pad
        self.t_pad2=self.t_pad*2
        self.t_query=self.sr*x_query#查询切点前后查询时间
        self.t_center=self.sr*x_center#查询切点位置
        self.t_max=self.sr*x_max#免查询时长阈值
        self.device=device
        self.is_half=is_half

    def get_f0(self,x, p_len,f0_up_key=0,inp_f0=None):
        time_step = self.window / self.sr * 1000
        f0_min = 50
        f0_max = 1100
        f0_mel_min = 1127 * np.log(1 + f0_min / 700)
        f0_mel_max = 1127 * np.log(1 + f0_max / 700)
        f0 = parselmouth.Sound(x, self.sr).to_pitch_ac(
            time_step=time_step / 1000, voicing_threshold=0.6,
            pitch_floor=f0_min, pitch_ceiling=f0_max).selected_array['frequency']
        pad_size=(p_len - len(f0) + 1) // 2
        if(pad_size>0 or p_len - len(f0) - pad_size>0):
            f0 = np.pad(f0,[[pad_size,p_len - len(f0) - pad_size]], mode='constant')
        f0 *= pow(2, f0_up_key / 12)
        # with open("test.txt","w")as f:f.write("\n".join([str(i)for i in f0.tolist()]))
        tf0=self.sr//self.window#每秒f0点数
        if (inp_f0 is not None):
            delta_t=np.round((inp_f0[:,0].max()-inp_f0[:,0].min())*tf0+1).astype("int16")
            replace_f0=np.interp(list(range(delta_t)), inp_f0[:, 0]*100, inp_f0[:, 1])
            shape=f0[x_pad*tf0:x_pad*tf0+len(replace_f0)].shape[0]
            f0[x_pad*tf0:x_pad*tf0+len(replace_f0)]=replace_f0[:shape]
        # with open("test_opt.txt","w")as f:f.write("\n".join([str(i)for i in f0.tolist()]))
        f0bak = f0.copy()
        f0_mel = 1127 * np.log(1 + f0 / 700)
        f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - f0_mel_min) * 254 / (f0_mel_max - f0_mel_min) + 1
        f0_mel[f0_mel <= 1] = 1
        f0_mel[f0_mel > 255] = 255
        f0_coarse = np.rint(f0_mel).astype(np.int)
        return f0_coarse, f0bak#1-0

    def vc(self,model,net_g,dv,audio0,pitch,pitchf,times):
        feats = torch.from_numpy(audio0)
        if(self.is_half==True):feats=feats.half()
        else:feats=feats.float()
        if feats.dim() == 2:  # double channels
            feats = feats.mean(-1)
        assert feats.dim() == 1, feats.dim()
        feats = feats.view(1, -1)
        padding_mask = torch.BoolTensor(feats.shape).fill_(False)

        inputs = {
            "source": feats.to(self.device),
            "padding_mask": padding_mask.to(self.device),
            "output_layer": 9,  # layer 9
        }
        t0 = ttime()
        with torch.no_grad():
            logits = model.extract_features(**inputs)
            feats  = model.final_proj(logits[0])
        feats = F.interpolate(feats.permute(0, 2, 1), scale_factor=2).permute(0, 2, 1)
        t1 = ttime()
        p_len = audio0.shape[0]//self.window
        if(feats.shape[1]<p_len):
            p_len=feats.shape[1]
            pitch=pitch[:,:p_len]
            pitchf=pitchf[:,:p_len]
        p_len=torch.LongTensor([p_len]).to(self.device)
        with torch.no_grad():
            audio1 = (net_g.infer(feats, p_len, pitch, pitchf, dv)[0][0, 0] * 32768).data.cpu().float().numpy().astype(np.int16)
        del feats,p_len,padding_mask
        torch.cuda.empty_cache()
        t2 = ttime()
        times[0] += (t1 - t0)
        times[2] += (t2 - t1)
        return audio1
    def vc_km(self,model,net_g,dv,audio0,pitch,pitchf,times):
        kmeans = KMeans(500)
        def get_cluster_result(x):
            """x: np.array [t, 256]"""
            return kmeans.predict(x)
        checkpoint = torch.load("lulu_contentvec_kmeans_500.pt")
        kmeans.__dict__["n_features_in_"] = checkpoint["n_features_in_"]
        kmeans.__dict__["_n_threads"] = checkpoint["_n_threads"]
        kmeans.__dict__["cluster_centers_"] = checkpoint["cluster_centers_"]
        feats = torch.from_numpy(audio0).float()
        if feats.dim() == 2:  # double channels
            feats = feats.mean(-1)
        assert feats.dim() == 1, feats.dim()
        feats = feats.view(1, -1)
        padding_mask = torch.BoolTensor(feats.shape).fill_(False)
        inputs = {
            "source": feats.half().to(self.device),
            "padding_mask": padding_mask.to(self.device),
            "output_layer": 9,  # layer 9
        }
        torch.cuda.synchronize()
        t0 = ttime()
        with torch.no_grad():
            logits = model.extract_features(**inputs)
            feats = model.final_proj(logits[0])
        feats = get_cluster_result(feats.cpu().numpy()[0].astype("float32"))
        feats = torch.from_numpy(feats).to(self.device)
        feats = F.interpolate(feats.half().unsqueeze(0).unsqueeze(0), scale_factor=2).long().squeeze(0)
        t1 = ttime()
        p_len = audio0.shape[0]//self.window
        if(feats.shape[1]<p_len):
            p_len=feats.shape[1]
            pitch=pitch[:,:p_len]
            pitchf=pitchf[:,:p_len]
        p_len=torch.LongTensor([p_len]).to(self.device)
        with torch.no_grad():
            audio1 = (net_g.infer(feats, p_len, pitch, pitchf, dv)[0][0, 0] * 32768).data.cpu().float().numpy().astype(np.int16)
        del feats,p_len,padding_mask
        torch.cuda.empty_cache()
        t2 = ttime()
        times[0] += (t1 - t0)
        times[2] += (t2 - t1)
        return audio1

    def pipeline(self,model,net_g,dv,audio,times,f0_up_key,f0_file=None):
        audio_pad = np.pad(audio, (self.window // 2, self.window // 2), mode='reflect')
        opt_ts = []
        if(audio_pad.shape[0]>self.t_max):
            audio_sum = np.zeros_like(audio)
            for i in range(self.window): audio_sum += audio_pad[i:i - self.window]
            for t in range(self.t_center, audio.shape[0],self.t_center):opt_ts.append(t - self.t_query + np.where(np.abs(audio_sum[t - self.t_query:t + self.t_query]) == np.abs(audio_sum[t - self.t_query:t + self.t_query]).min())[0][0])
        s = 0
        audio_opt=[]
        t=None
        t1=ttime()
        audio_pad = np.pad(audio, (self.t_pad, self.t_pad), mode='reflect')
        p_len=audio_pad.shape[0]//self.window
        inp_f0=None
        if(hasattr(f0_file,'name') ==True):
            try:
                with open(f0_file.name,"r")as f:
                    lines=f.read().strip("\n").split("\n")
                inp_f0=[]
                for line in lines:inp_f0.append([float(i)for i in line.split(",")])
                inp_f0=np.array(inp_f0,dtype="float32")
            except:
                traceback.print_exc()
        pitch, pitchf = self.get_f0(audio_pad, p_len, f0_up_key,inp_f0)

        pitch = pitch[:p_len]
        pitchf = pitchf[:p_len]
        # if(inp_f0 is None):
        #     pitch = pitch[:p_len]
        #     pitchf = pitchf[:p_len]
        # else:
        #     pitch=resize2d(pitch,p_len,is1=True)
        #     pitchf=resize2d(pitchf,p_len,is1=False)
        pitch = torch.LongTensor(pitch).unsqueeze(0).to(self.device)
        pitchf = torch.FloatTensor(pitchf).unsqueeze(0).to(self.device)
        t2=ttime()
        times[1] += (t2 - t1)
        for t in opt_ts:
            t=t//self.window*self.window
            audio_opt.append(self.vc(model,net_g,dv,audio_pad[s:t+self.t_pad2+self.window],pitch[:,s//self.window:(t+self.t_pad2)//self.window],pitchf[:,s//self.window:(t+self.t_pad2)//self.window],times)[self.t_pad_tgt:-self.t_pad_tgt])
            s = t
        audio_opt.append(self.vc(model,net_g,dv,audio_pad[t:],pitch[:,t//self.window:]if t is not None else pitch,pitchf[:,t//self.window:]if t is not None else pitchf,times)[self.t_pad_tgt:-self.t_pad_tgt])
        audio_opt=np.concatenate(audio_opt)
        del pitch,pitchf
        return audio_opt
    def pipeline_km(self,model,net_g,dv,audio,times,f0_up_key,f0_file=None):
        audio_pad = np.pad(audio, (self.window // 2, self.window // 2), mode='reflect')
        opt_ts = []
        if(audio_pad.shape[0]>self.t_max):
            audio_sum = np.zeros_like(audio)
            for i in range(self.window): audio_sum += audio_pad[i:i - self.window]
            for t in range(self.t_center, audio.shape[0],self.t_center):opt_ts.append(t - self.t_query + np.where(np.abs(audio_sum[t - self.t_query:t + self.t_query]) == np.abs(audio_sum[t - self.t_query:t + self.t_query]).min())[0][0])
        s = 0
        audio_opt=[]
        t=None
        t1=ttime()
        audio_pad = np.pad(audio, (self.t_pad, self.t_pad), mode='reflect')
        p_len=audio_pad.shape[0]//self.window
        inp_f0=None
        if(hasattr(f0_file,'name') ==True):
            try:
                with open(f0_file.name,"r")as f:
                    lines=f.read().strip("\n").split("\n")
                inp_f0=[]
                for line in lines:inp_f0.append([float(i)for i in line.split(",")])
                inp_f0=np.array(inp_f0,dtype="float32")
            except:
                traceback.print_exc()
        pitch, pitchf = self.get_f0(audio_pad, p_len, f0_up_key,inp_f0)

        pitch = pitch[:p_len]
        pitchf = pitchf[:p_len]
        # if(inp_f0 is None):
        #     pitch = pitch[:p_len]
        #     pitchf = pitchf[:p_len]
        # else:
        #     pitch=resize2d(pitch,p_len,is1=True)
        #     pitchf=resize2d(pitchf,p_len,is1=False)
        pitch = torch.LongTensor(pitch).unsqueeze(0).to(self.device)
        pitchf = torch.FloatTensor(pitchf).unsqueeze(0).to(self.device)
        t2=ttime()
        times[1] += (t2 - t1)
        for t in opt_ts:
            t=t//self.window*self.window
            audio_opt.append(self.vc_km(model,net_g,dv,audio_pad[s:t+self.t_pad2+self.window],pitch[:,s//self.window:(t+self.t_pad2)//self.window],pitchf[:,s//self.window:(t+self.t_pad2)//self.window],times)[self.t_pad_tgt:-self.t_pad_tgt])
            s = t
        audio_opt.append(self.vc_km(model,net_g,dv,audio_pad[t:],pitch[:,t//self.window:]if t is not None else pitch,pitchf[:,t//self.window:]if t is not None else pitchf,times)[self.t_pad_tgt:-self.t_pad_tgt])
        audio_opt=np.concatenate(audio_opt)
        del pitch,pitchf
        return audio_opt