File size: 6,511 Bytes
1c75048
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
import os.path
from argparse import ArgumentParser
import time

import librosa
import numpy as np
import soundfile
from scipy.ndimage import maximum_filter1d, uniform_filter1d


def timeit(func):
    def run(*args, **kwargs):
        t = time.time()
        res = func(*args, **kwargs)
        print('executing \'%s\' costed %.3fs' % (func.__name__, time.time() - t))
        return res
    return run


# @timeit
def _window_maximum(arr, win_sz):
    return maximum_filter1d(arr, size=win_sz)[win_sz // 2: win_sz // 2 + arr.shape[0] - win_sz + 1]


# @timeit
def _window_rms(arr, win_sz):
    filtered = np.sqrt(uniform_filter1d(np.power(arr, 2), win_sz) - np.power(uniform_filter1d(arr, win_sz), 2))
    return filtered[win_sz // 2: win_sz // 2 + arr.shape[0] - win_sz + 1]


def level2db(levels, eps=1e-12):
    return 20 * np.log10(np.clip(levels, a_min=eps, a_max=1))


def _apply_slice(audio, begin, end):
    if len(audio.shape) > 1:
        return audio[:, begin: end]
    else:
        return audio[begin: end]


class Slicer:
    def __init__(self,
                 sr: int,
                 db_threshold: float = -40,
                 min_length: int = 5000,
                 win_l: int = 300,
                 win_s: int = 20,
                 max_silence_kept: int = 500):
        self.db_threshold = db_threshold
        self.min_samples = round(sr * min_length / 1000)
        self.win_ln = round(sr * win_l / 1000)
        self.win_sn = round(sr * win_s / 1000)
        self.max_silence = round(sr * max_silence_kept / 1000)
        if not self.min_samples >= self.win_ln >= self.win_sn:
            raise ValueError('The following condition must be satisfied: min_length >= win_l >= win_s')
        if not self.max_silence >= self.win_sn:
            raise ValueError('The following condition must be satisfied: max_silence_kept >= win_s')

    @timeit
    def slice(self, audio):
        if len(audio.shape) > 1:
            samples = librosa.to_mono(audio)
        else:
            samples = audio
        if samples.shape[0] <= self.min_samples:
            return [audio]
        # get absolute amplitudes
        abs_amp = np.abs(samples - np.mean(samples))
        # calculate local maximum with large window
        win_max_db = level2db(_window_maximum(abs_amp, win_sz=self.win_ln))
        sil_tags = []
        left = right = 0
        while right < win_max_db.shape[0]:
            if win_max_db[right] < self.db_threshold:
                right += 1
            elif left == right:
                left += 1
                right += 1
            else:
                if left == 0:
                    split_loc_l = left
                else:
                    sil_left_n = min(self.max_silence, (right + self.win_ln - left) // 2)
                    rms_db_left = level2db(_window_rms(samples[left: left + sil_left_n], win_sz=self.win_sn))
                    split_win_l = left + np.argmin(rms_db_left)
                    split_loc_l = split_win_l + np.argmin(abs_amp[split_win_l: split_win_l + self.win_sn])
                if len(sil_tags) != 0 and split_loc_l - sil_tags[-1][1] < self.min_samples and right < win_max_db.shape[0] - 1:
                    right += 1
                    left = right
                    continue
                if right == win_max_db.shape[0] - 1:
                    split_loc_r = right + self.win_ln
                else:
                    sil_right_n = min(self.max_silence, (right + self.win_ln - left) // 2)
                    rms_db_right = level2db(_window_rms(samples[right + self.win_ln - sil_right_n: right + self.win_ln], win_sz=self.win_sn))
                    split_win_r = right + self.win_ln - sil_right_n + np.argmin(rms_db_right)
                    split_loc_r = split_win_r + np.argmin(abs_amp[split_win_r: split_win_r + self.win_sn])
                sil_tags.append((split_loc_l, split_loc_r))
                right += 1
                left = right
        if left != right:
            sil_left_n = min(self.max_silence, (right + self.win_ln - left) // 2)
            rms_db_left = level2db(_window_rms(samples[left: left + sil_left_n], win_sz=self.win_sn))
            split_win_l = left + np.argmin(rms_db_left)
            split_loc_l = split_win_l + np.argmin(abs_amp[split_win_l: split_win_l + self.win_sn])
            sil_tags.append((split_loc_l, samples.shape[0]))
        if len(sil_tags) == 0:
            return [audio]
        else:
            chunks = []
            if sil_tags[0][0] > 0:
                chunks.append(_apply_slice(audio, 0, sil_tags[0][0]))
            for i in range(0, len(sil_tags) - 1):
                chunks.append(_apply_slice(audio, sil_tags[i][1], sil_tags[i + 1][0]))
            if sil_tags[-1][1] < samples.shape[0] - 1:
                chunks.append(_apply_slice(audio, sil_tags[-1][1], samples.shape[0]))
            return chunks


def main():
    parser = ArgumentParser()
    parser.add_argument('audio', type=str, help='The audio to be sliced')
    parser.add_argument('--out', type=str, help='Output directory of the sliced audio clips')
    parser.add_argument('--db_thresh', type=float, required=False, default=-40, help='The dB threshold for silence detection')
    parser.add_argument('--min_len', type=int, required=False, default=5000, help='The minimum milliseconds required for each sliced audio clip')
    parser.add_argument('--win_l', type=int, required=False, default=300, help='Size of the large sliding window, presented in milliseconds')
    parser.add_argument('--win_s', type=int, required=False, default=20, help='Size of the small sliding window, presented in milliseconds')
    parser.add_argument('--max_sil_kept', type=int, required=False, default=500, help='The maximum silence length kept around the sliced audio, presented in milliseconds')
    args = parser.parse_args()
    out = args.out
    if out is None:
        out = os.path.dirname(os.path.abspath(args.audio))
    audio, sr = librosa.load(args.audio, sr=None)
    slicer = Slicer(
        sr=sr,
        db_threshold=args.db_thresh,
        min_length=args.min_len,
        win_l=args.win_l,
        win_s=args.win_s,
        max_silence_kept=args.max_sil_kept
    )
    chunks = slicer.slice(audio)
    if not os.path.exists(args.out):
        os.makedirs(args.out)
    for i, chunk in enumerate(chunks):
        soundfile.write(os.path.join(out, f'%s_%d.wav' % (os.path.basename(args.audio).rsplit('.', maxsplit=1)[0], i)), chunk, sr)


if __name__ == '__main__':
    main()