File size: 1,574 Bytes
1c75048 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 |
import json
import os
import pathlib
default_param = {}
default_param['bins'] = 768
default_param['unstable_bins'] = 9 # training only
default_param['reduction_bins'] = 762 # training only
default_param['sr'] = 44100
default_param['pre_filter_start'] = 757
default_param['pre_filter_stop'] = 768
default_param['band'] = {}
default_param['band'][1] = {
'sr': 11025,
'hl': 128,
'n_fft': 960,
'crop_start': 0,
'crop_stop': 245,
'lpf_start': 61, # inference only
'res_type': 'polyphase'
}
default_param['band'][2] = {
'sr': 44100,
'hl': 512,
'n_fft': 1536,
'crop_start': 24,
'crop_stop': 547,
'hpf_start': 81, # inference only
'res_type': 'sinc_best'
}
def int_keys(d):
r = {}
for k, v in d:
if k.isdigit():
k = int(k)
r[k] = v
return r
class ModelParameters(object):
def __init__(self, config_path=''):
if '.pth' == pathlib.Path(config_path).suffix:
import zipfile
with zipfile.ZipFile(config_path, 'r') as zip:
self.param = json.loads(zip.read('param.json'), object_pairs_hook=int_keys)
elif '.json' == pathlib.Path(config_path).suffix:
with open(config_path, 'r') as f:
self.param = json.loads(f.read(), object_pairs_hook=int_keys)
else:
self.param = default_param
for k in ['mid_side', 'mid_side_b', 'mid_side_b2', 'stereo_w', 'stereo_n', 'reverse']:
if not k in self.param:
self.param[k] = False |