File size: 3,262 Bytes
aee2e88 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 |
---
license: apache-2.0
base_model: line-corporation/line-distilbert-base-japanese
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: fc-binary-model
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# fc-binary-model
This model is a fine-tuned version of [line-corporation/line-distilbert-base-japanese](https://huggingface.co/line-corporation/line-distilbert-base-japanese) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3003
- Accuracy: 0.8730
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 64
- eval_batch_size: 8
- seed: 42
- distributed_type: tpu
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 30
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 306 | 0.3749 | 0.8594 |
| 0.4137 | 2.0 | 612 | 0.3596 | 0.8594 |
| 0.4137 | 3.0 | 918 | 0.3459 | 0.8594 |
| 0.383 | 4.0 | 1224 | 0.3423 | 0.8613 |
| 0.3709 | 5.0 | 1530 | 0.3348 | 0.8613 |
| 0.3709 | 6.0 | 1836 | 0.3292 | 0.8672 |
| 0.364 | 7.0 | 2142 | 0.3275 | 0.8633 |
| 0.364 | 8.0 | 2448 | 0.3235 | 0.8652 |
| 0.3587 | 9.0 | 2754 | 0.3227 | 0.8633 |
| 0.3509 | 10.0 | 3060 | 0.3182 | 0.8652 |
| 0.3509 | 11.0 | 3366 | 0.3154 | 0.8730 |
| 0.3531 | 12.0 | 3672 | 0.3132 | 0.8691 |
| 0.3531 | 13.0 | 3978 | 0.3108 | 0.8691 |
| 0.3478 | 14.0 | 4284 | 0.3112 | 0.875 |
| 0.344 | 15.0 | 4590 | 0.3086 | 0.8711 |
| 0.344 | 16.0 | 4896 | 0.3070 | 0.8730 |
| 0.3386 | 17.0 | 5202 | 0.3047 | 0.875 |
| 0.34 | 18.0 | 5508 | 0.3058 | 0.875 |
| 0.34 | 19.0 | 5814 | 0.3054 | 0.875 |
| 0.3356 | 20.0 | 6120 | 0.3043 | 0.8730 |
| 0.3356 | 21.0 | 6426 | 0.3037 | 0.8770 |
| 0.3331 | 22.0 | 6732 | 0.3034 | 0.875 |
| 0.3356 | 23.0 | 7038 | 0.3022 | 0.875 |
| 0.3356 | 24.0 | 7344 | 0.3019 | 0.8730 |
| 0.3317 | 25.0 | 7650 | 0.3022 | 0.8711 |
| 0.3317 | 26.0 | 7956 | 0.3017 | 0.8711 |
| 0.3275 | 27.0 | 8262 | 0.3011 | 0.8770 |
| 0.328 | 28.0 | 8568 | 0.3005 | 0.8730 |
| 0.328 | 29.0 | 8874 | 0.3004 | 0.8730 |
| 0.3315 | 30.0 | 9180 | 0.3003 | 0.8730 |
### Framework versions
- Transformers 4.34.0
- Pytorch 2.0.0+cu118
- Datasets 2.14.5
- Tokenizers 0.14.0
|