fc-binary-model
Browse files
README.md
ADDED
@@ -0,0 +1,90 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model: line-corporation/line-distilbert-base-japanese
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- accuracy
|
8 |
+
model-index:
|
9 |
+
- name: fc-binary-model
|
10 |
+
results: []
|
11 |
+
---
|
12 |
+
|
13 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
14 |
+
should probably proofread and complete it, then remove this comment. -->
|
15 |
+
|
16 |
+
# fc-binary-model
|
17 |
+
|
18 |
+
This model is a fine-tuned version of [line-corporation/line-distilbert-base-japanese](https://huggingface.co/line-corporation/line-distilbert-base-japanese) on the None dataset.
|
19 |
+
It achieves the following results on the evaluation set:
|
20 |
+
- Loss: 0.3003
|
21 |
+
- Accuracy: 0.8730
|
22 |
+
|
23 |
+
## Model description
|
24 |
+
|
25 |
+
More information needed
|
26 |
+
|
27 |
+
## Intended uses & limitations
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Training and evaluation data
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Training procedure
|
36 |
+
|
37 |
+
### Training hyperparameters
|
38 |
+
|
39 |
+
The following hyperparameters were used during training:
|
40 |
+
- learning_rate: 0.0001
|
41 |
+
- train_batch_size: 64
|
42 |
+
- eval_batch_size: 8
|
43 |
+
- seed: 42
|
44 |
+
- distributed_type: tpu
|
45 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
46 |
+
- lr_scheduler_type: linear
|
47 |
+
- num_epochs: 30
|
48 |
+
|
49 |
+
### Training results
|
50 |
+
|
51 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
52 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
53 |
+
| No log | 1.0 | 306 | 0.3749 | 0.8594 |
|
54 |
+
| 0.4137 | 2.0 | 612 | 0.3596 | 0.8594 |
|
55 |
+
| 0.4137 | 3.0 | 918 | 0.3459 | 0.8594 |
|
56 |
+
| 0.383 | 4.0 | 1224 | 0.3423 | 0.8613 |
|
57 |
+
| 0.3709 | 5.0 | 1530 | 0.3348 | 0.8613 |
|
58 |
+
| 0.3709 | 6.0 | 1836 | 0.3292 | 0.8672 |
|
59 |
+
| 0.364 | 7.0 | 2142 | 0.3275 | 0.8633 |
|
60 |
+
| 0.364 | 8.0 | 2448 | 0.3235 | 0.8652 |
|
61 |
+
| 0.3587 | 9.0 | 2754 | 0.3227 | 0.8633 |
|
62 |
+
| 0.3509 | 10.0 | 3060 | 0.3182 | 0.8652 |
|
63 |
+
| 0.3509 | 11.0 | 3366 | 0.3154 | 0.8730 |
|
64 |
+
| 0.3531 | 12.0 | 3672 | 0.3132 | 0.8691 |
|
65 |
+
| 0.3531 | 13.0 | 3978 | 0.3108 | 0.8691 |
|
66 |
+
| 0.3478 | 14.0 | 4284 | 0.3112 | 0.875 |
|
67 |
+
| 0.344 | 15.0 | 4590 | 0.3086 | 0.8711 |
|
68 |
+
| 0.344 | 16.0 | 4896 | 0.3070 | 0.8730 |
|
69 |
+
| 0.3386 | 17.0 | 5202 | 0.3047 | 0.875 |
|
70 |
+
| 0.34 | 18.0 | 5508 | 0.3058 | 0.875 |
|
71 |
+
| 0.34 | 19.0 | 5814 | 0.3054 | 0.875 |
|
72 |
+
| 0.3356 | 20.0 | 6120 | 0.3043 | 0.8730 |
|
73 |
+
| 0.3356 | 21.0 | 6426 | 0.3037 | 0.8770 |
|
74 |
+
| 0.3331 | 22.0 | 6732 | 0.3034 | 0.875 |
|
75 |
+
| 0.3356 | 23.0 | 7038 | 0.3022 | 0.875 |
|
76 |
+
| 0.3356 | 24.0 | 7344 | 0.3019 | 0.8730 |
|
77 |
+
| 0.3317 | 25.0 | 7650 | 0.3022 | 0.8711 |
|
78 |
+
| 0.3317 | 26.0 | 7956 | 0.3017 | 0.8711 |
|
79 |
+
| 0.3275 | 27.0 | 8262 | 0.3011 | 0.8770 |
|
80 |
+
| 0.328 | 28.0 | 8568 | 0.3005 | 0.8730 |
|
81 |
+
| 0.328 | 29.0 | 8874 | 0.3004 | 0.8730 |
|
82 |
+
| 0.3315 | 30.0 | 9180 | 0.3003 | 0.8730 |
|
83 |
+
|
84 |
+
|
85 |
+
### Framework versions
|
86 |
+
|
87 |
+
- Transformers 4.34.0
|
88 |
+
- Pytorch 2.0.0+cu118
|
89 |
+
- Datasets 2.14.5
|
90 |
+
- Tokenizers 0.14.0
|