|
--- |
|
license: apache-2.0 |
|
datasets: |
|
- wikipedia |
|
- mc4 |
|
- cc100 |
|
- oscar |
|
language: |
|
- ja |
|
--- |
|
|
|
# japanese-large-lm-1.7b |
|
|
|
This repository provides a 1.7B parameters Japanese language model, trained by [LINE Corporation](https://linecorp.com/ja/). |
|
|
|
[Tech Blog](https://engineering.linecorp.com/ja/blog/3.6-billion-parameter-japanese-language-model) explains details. |
|
|
|
## How to use |
|
|
|
``` |
|
import torch |
|
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline, set_seed |
|
|
|
model = AutoModelForCausalLM.from_pretrained("line-corporation/japanese-large-lm-1.7b", torch_dtype=torch.float16) |
|
tokenizer = AutoTokenizer.from_pretrained("line-corporation/japanese-large-lm-1.7b", use_fast=False) |
|
generator = pipeline("text-generation", model=model, tokenizer=tokenizer, device=0) |
|
set_seed(101) |
|
|
|
text = generator( |
|
"おはようございます、今日の天気は", |
|
max_length=30, |
|
do_sample=True, |
|
pad_token_id=tokenizer.pad_token_id, |
|
num_return_sequences=5, |
|
) |
|
|
|
for t in text: |
|
print(t) |
|
|
|
# [{'generated_text': 'おはようございます、今日の天気は雨模様ですね。梅雨のこの時期の ジメジメ、ムシムシはたまらないですねえ~。 皆さんもお'}, |
|
# {'generated_text': 'おはようございます、今日の天気は快晴。 そして、朝8時15分には、 8月9日現在の、 月島・勝どき・'}, |
|
# {'generated_text': 'おはようございます、今日の天気は曇りです。 朝起きたら雪がチラついていました。 日中も雪が舞い散るような天気です。 朝から寒いですね。'}, |
|
# {'generated_text': 'おはようございます、今日の天気は雨です。昨日、天気が悪く洗濯物を干しにベランダに出た時に雨に降られ、風邪が悪化しそうです。今日洗濯'}, |
|
# {'generated_text': 'おはようございます、今日の天気は晴天ですが涼しい1日です、気温は午後になり 若干下がる予報です。 6月も10日を'}] |
|
``` |
|
|
|
## Model architecture |
|
| Model | Vocab size | Architecture | Position type | Layers | Hidden dim | Attention heads | |
|
| :---: | :--------: | :----------- | :-----------: | :----: | :--------: | :-------------: | |
|
| 1.7B | 51200 | GPT2 | Absolute | 24 | 2304 | 24 | |
|
| 3.6B | 51200 | GPTNeoX | RoPE | 30 | 3072 | 32 | |
|
|
|
## Training Corpus |
|
Our training corpus consists of the Japanese portions of publicly available corpus such as C4, CC-100, and Oscar. |
|
We also incorporated the Web texts crawled by in-house system. |
|
The total size of our training corpus is about 650 GB. |
|
The trained model achieves 8.57 perplexity on the internal validation sets of Japanese C4. |
|
|
|
## Tokenization |
|
We use a sentencepiece tokenizer with a unigram language model and byte-fallback. |
|
We **do not** apply pre-tokenization with Japanese tokenizer. |
|
Thus, a user may directly feed raw sentences into the tokenizer. |
|
|
|
|
|
## License |
|
[Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0) |