File size: 18,007 Bytes
7f52a15 89919e7 7f52a15 89919e7 bccb539 89919e7 7f52a15 5fe8b41 7f52a15 5fe8b41 7f52a15 5fe8b41 7f52a15 5fe8b41 7f52a15 5fe8b41 7f52a15 5fe8b41 7f52a15 89919e7 7f52a15 89919e7 7f52a15 bccb539 b5aa510 bccb539 5fe8b41 b5aa510 bccb539 b5aa510 5fe8b41 bccb539 b5aa510 bccb539 5fe8b41 7f52a15 5fe8b41 7f52a15 89919e7 5fe8b41 89919e7 5fe8b41 89919e7 5fe8b41 89919e7 5fe8b41 89919e7 bccb539 89919e7 bccb539 7f52a15 89919e7 7f52a15 89919e7 7f52a15 89919e7 5fe8b41 89919e7 7f52a15 89919e7 5fe8b41 89919e7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 |
import math
import os
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import CrossEntropyLoss, BCEWithLogitsLoss, MSELoss
from transformers.modeling_outputs import (
BaseModelOutput,
CausalLMOutput,
SequenceClassifierOutput
)
from transformers.modeling_utils import PreTrainedModel
from transformers.utils import logging
from .rita_configuration import RITAConfig
import torch.nn.functional as F
logger = logging.get_logger(__name__)
@torch.jit.script
def RITA_gelu(hidden_states):
return hidden_states * 0.5 * (1.0 + torch.tanh(0.79788456 * hidden_states * (1 + 0.044715 * hidden_states * hidden_states)))
class RITAGELU(nn.Module):
def __init__(self):
super().__init__()
def forward(self, hidden_states):
return RITA_gelu(hidden_states)
def rotate_half(x):
x1, x2 = x[..., : x.shape[-1] // 2], x[..., x.shape[-1] // 2 :]
return torch.cat((-x2, x1), dim=x1.ndim - 1)
class RotaryEmbedding(nn.Module):
def __init__(self, config):
super().__init__()
assert config.d_model % config.num_heads == 0
self.d_model = config.d_model
self.num_heads = config.num_heads
self.max_seq_len = config.max_seq_len
head_dim = self.d_model // self.num_heads
inv_freq = 1.0 / (10000 ** (torch.arange(0, head_dim, 2).float() / head_dim))
self.register_buffer('inv_freq', inv_freq)
self.seq_len_cached = None
self.cos_cached = None
self.sin_cached = None
def forward(self, x: torch.FloatTensor, seq_dim=1) -> torch.FloatTensor:
seq_len = x.shape[seq_dim]
if seq_len != self.seq_len_cached:
self.seq_len_cached = seq_len
t = torch.arange(x.shape[seq_dim], device=x.device).type_as(self.inv_freq)
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
emb = torch.cat((freqs, freqs), dim=-1).to(x.device)
self.cos_cached = emb.cos()[None, None, :, :]
self.sin_cached = emb.sin()[None, None, :, :]
return self.cos_cached, self.sin_cached
def apply_rotary_pos_emb(self, q, k, cos, sin):
return (q * cos) + (rotate_half(q) * sin), (k * cos) + (rotate_half(k) * sin)
class SelfAttention(nn.Module):
"""Implementation of MultiHeadAttention following `Karpathy's MinGPT <https://github.com/karpathy/minGPT>`_.
modified to use rotary embeddings.
Parameters
----------
d_model: int,
total dimension of the model.
num_heads: int,
number of parallel attention heads.
num_layers: int,
number of layers in the model, used for the Megatron-like init.
rotaty_embedding: Optional[Block], default None,
a RotaryEmbedding Block to add positionnal information in Queries and Keys
dropout: float, default 0.1,
amount of dropout on the attention weights.
sigma: float, default 0.02,
standard deviation used for the init.
trainable: bool, default True,
if False, the Module parameters will be hidden from the optimizer.
"""
def __init__(
self,
d_model: int,
num_heads: int,
num_layers: int,
rotary_embedding= None,
dropout: float = 0.1,
sigma=0.02,
use_cache: bool = False,
bias=True,
):
super().__init__()
assert d_model % num_heads == 0
self.d_model = d_model
self.num_heads = num_heads
self.head_dim = self.d_model // self.num_heads
self.num_layers = num_layers
self.dropout = dropout
self.sigma = sigma
self.bias = bias
# key, query, value projections for all heads
self.key = nn.Linear(d_model, d_model, bias=bias)
self.query = nn.Linear(d_model, d_model, bias=bias)
self.value = nn.Linear(d_model, d_model, bias=bias)
# regularization
self.attn_drop = nn.Dropout(dropout)
self.resid_drop = nn.Dropout(dropout)
# output projection
self.proj = nn.Linear(d_model, d_model, bias=bias)
self.rotary_embedding = rotary_embedding
self.layer_id = None # will be set by the Transformer itself
self.use_cache = use_cache
self.qkv = None
self.bias = bias
def forward(
self,
x,
causal_mask: Optional[torch.BoolTensor] = None,
attention_mask: Optional[torch.BoolTensor] = None,
) -> Tuple[torch.FloatTensor, torch.FloatTensor]:
N, L, D = x.size() # Batch_size, Context_size, d_model
# calculate query, key, values for all heads in batch and move head forward to be the batch dim
k = (
self.key(x).view(N, L, self.num_heads, D // self.num_heads).transpose(1, 2)
) # (N, nh, L, hs)
q = (
self.query(x).view(N, L, self.num_heads, D // self.num_heads).transpose(1, 2)
) # (N, nh, L, hs)
v = (
self.value(x).view(N, L, self.num_heads, D // self.num_heads).transpose(1, 2)
) # (N, nh, L, hs)
if self.rotary_embedding is not None:
cos, sin = self.rotary_embedding(x)
q, k = self.rotary_embedding.apply_rotary_pos_emb(q, k, cos, sin)
# causal self-attention; Self-attend: (N, nh, L, hs) x (N, nh, hs, L) -> (N, nh, L, L)
att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1)))
if causal_mask is not None:
att[:,:,-L:, -L: ].masked_fill_(causal_mask.view(1, 1, L, L), float("-inf"))
att = (
att.transpose(0, 2)
.masked_fill(attention_mask.view(1, 1, N, L)==0, float("-inf"))
.transpose(0, 2)
if attention_mask is not None
else att
)
att = F.softmax(att, dim=-1)
att = self.attn_drop(att)
y = att @ v # (N, nh, L, L) x (N, nh, L, hs) -> (N, nh, L, hs)
y = (
y.transpose(1, 2).contiguous().view(N, L, D)
) # re-assemble all head outputs side by side
# output projection
y = self.resid_drop(self.proj(y))
return y
class DecoderLayer(nn.Module):
"""Transformer block containing the self-attention module and the feedfoward module."""
def __init__(
self, config
):
super().__init__()
self.self_attention = SelfAttention(config.d_model, config.num_heads, config.dropout, rotary_embedding=RotaryEmbedding(config))
self.attn_norm = nn.LayerNorm(config.d_model)
self.attn_dropout = nn.Dropout(config.dropout)
self.mlp = nn.Sequential(
nn.Linear(config.d_model, config.d_feedforward, bias=True),
RITAGELU(),
nn.Linear(config.d_feedforward, config.d_model, bias=True),
)
self.mlp_norm = nn.LayerNorm(config.d_model)
self.mlp_dropout = nn.Dropout(config.dropout)
def forward(
self,
x: torch.FloatTensor,
causal_mask: torch.BoolTensor,
attention_mask: Optional[torch.BoolTensor] = None,
) -> torch.FloatTensor:
y = self.attn_norm(x)
y = self.self_attention(y, causal_mask=causal_mask, attention_mask=attention_mask)
x = x + self.attn_dropout(y)
y = self.mlp_norm(x)
y = self.mlp(y)
x = x + self.mlp_dropout(y)
return x
class RITAModel(PreTrainedModel):
config_class = RITAConfig
base_model_prefix = "transformer"
is_parallelizable = False
def __init__(
self,
config
):
super().__init__(config)
self.embedding = nn.Embedding(config.vocab_size, config.d_model)
self.layers = nn.ModuleList([DecoderLayer(config) for _ in range(config.num_layers)])
self.final_norm = nn.LayerNorm(config.d_model)
def forward(
self,
input_ids=None,
past_key_values=None, # NOT USED
attention_mask=None,
causal_mask=None,
token_type_ids=None, # NOT USED
position_ids=None, # NOT USED
head_mask=None, # NOT USED
inputs_embeds=None,
encoder_hidden_states=None, # NOT USED
encoder_causal_mask=None, # NOT USED
labels=None,
use_cache=None, # NOT USED
output_attentions=None, # NOT USED
output_hidden_states=None, # NOT USED
return_dict=None # NOT USED
) -> torch.FloatTensor:
if inputs_embeds == None:
x = self.embedding(input_ids) # N x L x D
else:
x = inputs_embeds
if causal_mask == None:
causal_mask = (torch.triu(torch.ones(input_ids.size(1), input_ids.size(1))) == 0).transpose(0, 1).contiguous().to(input_ids.device)
for layer in self.layers:
x = layer(x, causal_mask=causal_mask, attention_mask=attention_mask)
x = self.final_norm(x) # N x L x D
return BaseModelOutput(
hidden_states=x,
)
#Some common HF functions.
def get_input_embeddings(self):
return self.embedding
def set_input_embeddings(self, new_embeddings):
self.embedding = new_embeddings
def _init_weights(self, module):
"""Initialize the weights."""
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
class RITAModelForCausalLM(PreTrainedModel):
config_class = RITAConfig
base_model_prefix = "transformer"
is_parallelizable = False
def __init__(
self,
config
):
super().__init__(config)
self.transformer = RITAModel(config)
self.lm_head = nn.Linear(config.d_model, config.vocab_size, bias=False)
def forward(
self,
input_ids=None,
past_key_values=None, # NOT USED
attention_mask=None,
causal_mask=None,
token_type_ids=None, # NOT USED
position_ids=None, # NOT USED
head_mask=None, # NOT USED
inputs_embeds=None,
encoder_hidden_states=None, # NOT USED
encoder_causal_mask=None, # NOT USED
labels=None,
use_cache=None, # NOT USED
output_attentions=None, # NOT USED
output_hidden_states=None, # NOT USED
return_dict=None # NOT USED
) -> torch.FloatTensor:
transformer_outputs = self.transformer(
input_ids,
past_key_values=past_key_values,
causal_mask=causal_mask,
attention_mask = attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
logits = self.lm_head(transformer_outputs.hidden_states)
loss = None
if labels is not None:
# Shift so that tokens < n predict n
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
# Flatten the tokens
loss_fct = CrossEntropyLoss()
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
return CausalLMOutput(
loss=loss,
logits=logits,
hidden_states=transformer_outputs.hidden_states,
)
#Some common HF functions.
def get_input_embeddings(self):
return self.transformer.embedding
def set_input_embeddings(self, new_embeddings):
self.transformer.embedding = new_embeddings
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, lm_head):
self.lm_head = lm_head
def _init_weights(self, module):
"""Initialize the weights."""
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
class RITAModelForSequenceClassification(PreTrainedModel):
config_class = RITAConfig
base_model_prefix = "transformer"
is_parallelizable = False
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.transformer = RITAModel(config)
self.score = nn.Linear(config.d_model, self.num_labels, bias=False)
def forward(
self,
input_ids=None,
past_key_values=None,
attention_mask=None,
causal_mask=None,
token_type_ids=None,
position_ids=None,
head_mask=None,
inputs_embeds=None,
labels=None,
use_cache=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
transformer_outputs = self.transformer(
input_ids,
past_key_values=past_key_values,
attention_mask=attention_mask,
causal_mask=causal_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = transformer_outputs[0]
logits = self.score(hidden_states)
if input_ids is not None:
batch_size, sequence_length = input_ids.shape[:2]
else:
batch_size, sequence_length = inputs_embeds.shape[:2]
assert (
self.config.pad_token_id is not None or batch_size == 1
), "Cannot handle batch sizes > 1 if no padding token is defined."
if self.config.pad_token_id is None:
sequence_lengths = -1
else:
if input_ids is not None:
sequence_lengths = torch.ne(input_ids, self.config.pad_token_id).sum(-1) - 1
else:
sequence_lengths = -1
logger.warning(
f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be "
f"unexpected if using padding tokens in conjunction with `inputs_embeds.`"
)
pooled_logits = logits[torch.arange(batch_size, device=self.device), sequence_lengths]
loss = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.num_labels == 1:
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(pooled_logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(pooled_logits, labels)
if not return_dict:
output = (pooled_logits,) + transformer_outputs[1:]
return ((loss,) + output) if loss is not None else output
return SequenceClassifierOutput(
loss=loss,
logits=pooled_logits,
)
def _init_weights(self, module):
"""Initialize the weights."""
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
|